
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ONLINE, INTERACTIVE, 3D FINITE ELEMENT STRESS ANALYSIS USING

HIGH-PERFORMANCE COMPUTING CLUSTER

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirement for the

Degree of

MASTER OF SCIENCE

By

ZACHARY MARK VICK
Norman, Oklahoma

2012

ONLINE, INTERACTIVE, 3D FINITE ELEMENT STRESS ANALYSIS USING
HIGH-PERFORMANCE COMPUTING CLUSTER

A THESIS APPROVED FOR THE
SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING

BY

Dr. Kurt Gramoll, Chair

Dr. Wilson Merchán-Merchán

Dr. Zahed Siddique

© Copyright by ZACHARY MARK VICK 2012
All Rights Reserved.

iv

Acknowledgements

 The author would like to thank Dr. Gramoll for his support throughout this

project. His knowledge and experience proved invaluable not only to the study at hand

but to the general development and benefit of the author. The author would also like to

thank the faculty of the School of Aerospace and Mechanical Engineering for everything

they have offered, in particular Dr. Siddique for his guidance in both graduate and

undergraduate endeavors and Dr. Merchán-Merchán for his support and consideration.

v

Table of Contents

Acknowledgements .. iv�

Table of Contents .. v�

List of Tables ... viii�

List of Figures .. ix�

Abstract ... xii�

1� Introduction ... 1�

1.1� Purpose of SAMSON ... 3�

1.2� Contributions and accomplishments .. 8�

2� Operation of SAMSON... 10�

2.1� Loading a geometry file ... 14�

2.2� Selecting boundary and loading conditions ... 15�

2.3� Meshing the object ... 17�

2.4� Inputting material properties and solving the simulation 19�

2.5� Interacting with the results ... 19�

3� The Finite Element Method Implementation .. 24�

3.1� An introduction to the finite element method .. 24�

3.2� FEM theory utilized by SAMSON ... 26�

3.2.1� Stress and strain in three dimensions .. 26�

3.2.2� Element selection, the tetrahedral element ... 29�

vi

3.2.3� Matrix analysis techniques .. 32�

4� Input Geometry Creation and Processing ... 36�

4.1� Creation of the custom geometry ... 36�

4.2� Analyzing the 3D model file .. 38�

5� Meshing Implementation .. 45�

5.1� An introduction to mesh generation ... 45�

5.2� Ordered mesh generation ... 49�

5.3� 2D Delaunay triangulation ... 59�

5.3.1� Incremental 2D Delaunay triangulation by building the convex hull 61�

5.3.2� Incremental 2D Delaunay triangulation using a super-triangulation 73�

5.4� Random mesh generation ... 82�

5.4.1� Analyze the geometry ... 83�

5.4.2� Generate random nodes... 83�

5.4.3� Sort nodes.. 85�

5.4.4� Build super-tetrahedralization ... 88�

5.4.5� 3D Delaunay tetrahedralization .. 89�

5.4.6� Remove super-tetrahedralization .. 95�

6� Cluster Implementation ... 99�

6.1� Web/file hosting ... 99�

6.1.1� Web hosting .. 99�

vii

6.1.2� File hosting.. 100�

6.2� Remote calculations ... 101�

7� Results ... 107�

7.1� Comparison to theory ... 107�

7.2� Meshing runtimes ... 108�

7.3� Solving runtimes .. 110�

7.4� Comparison to other FEM software packages ... 113�

8� Conclusion .. 117�

8.1� Contributions and accomplishments .. 118�

8.2� Future development .. 119�

9� References ... 121�

10� Appendices .. 125�

10.1� Appendix A: Finding the closest point on a triangle in 3D 125�

10.1.1� Mathematical formulation ... 125�

10.1.2� Implementation ... 128�

10.2� Appendix B: Job control program .. 132�

viii

List of Tables

Table 4.1: COLLADA vertex information ... 43�

Table 4.2: COLLADA triangle information ... 43�

Table 4.3: Obtained vertex information .. 44�

Table 4.4: Obtained triangle information .. 44�

Table 5.1: Five positive volume tetrahedra... 53�

Table 5.2: Six positive volume tetrahedra .. 54�

Table 7.1: Local vs. remote runtimes for ordered meshing .. 108�

Table 7.2: Programming language runtimes for ordered meshing 109�

Table 7.3: Local vs. remote runtimes for FEM solver routine.. 111�

Table 7.4: Remote runtimes varying the number of cores .. 112�

ix

List of Figures

Figure 1.1: SAMSON Process Map .. 2�

Figure 2.1: Sample problem description ... 11�

Figure 2.2: Tool interface with loaded geometry .. 13�

Figure 2.3: Geometry with selected boundary conditions .. 16�

Figure 2.4: Geometry with coarse ordered mesh .. 18�

Figure 2.5: Deformed mesh, deformation scaled by 100 .. 20�

Figure 2.6: Von Mises elemental stress states .. 22�

Figure 3.1: 3D Stresses on an element .. 26�

Figure 3.2: General solid tetrahedral element ... 29�

Figure 3.3: Sample full global stiffness .. 33�

Figure 3.4: Global stiffness upper band stored as a rectangular array 34�

Figure 3.5: FEM process map ... 35�

Figure 4.1: Custom geometry created using Google SketchUp26 37�

Figure 5.1: Quality of tetrahedral elements .. 46�

Figure 5.2: Signed volume convention of Ei = { Pj, Pk, Pl, Pm } 49�

Figure 5.3: Extruded ellipse from Google SketchUp .. 50�

Figure 5.4: Constructed and discretized bounding box for extruded ellipse 50�

Figure 5.5: Testing for point location in relation to an arbitrary geometry 51�

Figure 5.6: Division of a rectangular prism into five tetrahedra 53�

Figure 5.7: Division of a rectangular prism into six tetrahedra .. 54�

Figure 5.8: Repeating orientation of five tetrahedra rectangular prisms 55�

Figure 5.9: Repeating orientation of six tetrahedra rectangular prisms 56�

x

Figure 5.10: Three geometries meshed with the ordered meshing routine 57�

Figure 5.11: Ordered meshing process map ... 58�

Figure 5.12: Delaunay triangulation with circumcircles shown 60�

Figure 5.13: Convex hull in 2D .. 61�

Figure 5.14: Adding a point to a 2D convex hull ... 63�

Figure 5.15: Incremental method for finding convex hull from kernel 63�

Figure 5.16: 200 random points in the (x, y) plane ... 65�

Figure 5.17: 200 random points lifted into 3D ... 65�

Figure 5.18: Adding one point to a tetrahedral kernel .. 67�

Figure 5.19: Lower convex hull of 200 random points .. 70�

Figure 5.20: Delaunay triangulation for 200 random points ... 71�

Figure 5.21: Super-triangulations for 7 random points ... 74�

Figure 5.22: Adding a point to an existing triangulation .. 75�

Figure 5.23: Delaunay triangulation of 7 random points with super-triangulation 78�

Figure 5.24: Removal of the super-triangulation .. 78�

Figure 5.25: 1000 random points .. 79�

Figure 5.26: Super-triangulation of 1000 random points.. 79�

Figure 5.27: Delaunay triangulation of random and super-triangulation points 80�

Figure 5.28: Final Delaunay triangulation of 1000 random points 80�

Figure 5.29: Surface (blue) and interior (green) nodes generated randomly 85�

Figure 5.30: Super-tetrahedralizations for 7 random points ... 88�

Figure 5.31: Super-tetrahedralization for cube geometry ... 89�

Figure 5.32: Delaunay tetrahedralization with super-tetrahedralization 94�

xi

Figure 5.33: Removal of the super-tetrahedralization .. 95�

Figure 5.34: Two geometries meshed with the random meshing routine 97�

Figure 5.35: Random meshing process map ... 98�

Figure 6.1: HPC cluster utilization process map .. 105�

Figure 7.1: SAMSON results compared to theory .. 107�

Figure 7.2: Ordered meshing runtimes vs. number of generated nodes 110�

Figure 7.3: Remote runtime vs. number of cores for 72,963 DOF 112�

Figure 7.4: SAMSON results compared to theory for balsa wood beam 114�

Figure 7.5: SolidWorks Simulation results compared to theory for balsa wood beam .. 114�

Figure 7.6: SolidWorks Simulation and SAMSON convergence (~103 nodes) 115�

Figure 7.7: SolidWorks Simulation and SAMSON convergence (~104 nodes) 115�

Figure 7.8: SolidWorks Simulation and SAMSON convergence (~ 4×104 nodes) 116�

Figure 10.1: Point and triangle in 3D.. 125�

Figure 10.2: Boundary regions of a triangle in 3D ... 126�

Figure 10.3: Level curves of Q(s, t) .. 127�

Figure 10.4: Three cases for level curve with center in Region 2 127�

xii

Abstract

The use of a remote, high-performance computing (HPC) cluster in solving 3D

finite element method (FEM) problems for engineering applications was investigated. An

online, interactive engineering tool referred to SAMSON (Solid Analysis Meshing and

Solving ONline), was developed to explore the potential for remote versus local

computing of complex geometry stress analysis using FEM. In SAMSON, 3D models in

a COLLADA (COLLAborative Design Activity)1 (.DAE) file format can be loaded from

the local machine or from a pre-designed geometry library. SAMSON volumetrically

meshes the geometry using tetrahedral elements to a user defined level of refinement.

Loads and boundary conditions are then applied to the model, and the program solves for

nodal displacements, elemental stresses, and elemental strains.

It was found that the use of SAMSON has many advantages in engineering

applications to traditional, locally installed FEM software packages. SAMSON is

accessible from any machine with internet access and requires no cost to use. This allows

SAMSON to be accessed from field or remote locations with internet access. In

engineering education, the webpage-based nature of SAMSON allows it to be integrated

seamlessly into the course material for a basic mechanics of materials class. Namely, it

has been included as part of the electronic book (eBook) Multimedia Engineering

Mechanics of Materials2 for use in demonstrating 3D elasticity and stress fields.

The utilization of a remote HPC cluster in solving computationally intensive

problems was found to have numerous advantages to local computation. The HPC cluster

has much greater computing power than most personal machines, greatly reducing the

xiii

computational time as compared to local calculation. In this case, the computational time

no longer depends on the processing power of the local machine as the most complex

calculations are performed remotely. This opens up the possibility of performing FEM

simulations with many degrees of freedom from less powerful hardware, including

laptops, tablets, and smartphones. The only requirements become internet accessibility

and hardware support of Flash Player.

The major limitations of SAMSON were found to be the time required to transfer data

between components on the remote server and large increases in computation time when

problems were too large to be completely solved using the HPC cluster’s local memory.

It was found that for most cases, the transfer time to and from the remote server was

negligible when compared to data transfer between applications on the server, data

parsing, and string manipulation. All cluster computations were done on a 32 node, 382

cell cluster (Intel CPUs running under windows 2008 HPC Server R2 system) at the

University of Oklahoma dedicated to engineering education. All simulations are internet-

based, and are freely open to others to utilize at their institutions.

1

1 Introduction

This thesis presents the research completed to develop an online, interactive

engineering tool referred to as SAMSON (Solid Analysis Meshing and Solving ONline).

SAMSON utilizes a remote high-performance computing (HPC) cluster to perform finite

element method (FEM) analysis on complex geometries. SAMSON consists of a

webpage-based interface run in Flash Player and a remote back-end capable of

performing complex calculations utilizing parallel processing techniques on a HPC

cluster. 3D geometry files can be generated using free 3D modeling software (e.g. Google

SketchUp and Blender) and imported into SAMSON. SAMSON volumetrically meshes

the imported geometry using tetrahedral elements to a user defined level of refinement.

Loads and boundary conditions are then applied to the FEM model, and the program

solves for nodal displacements, elemental strains, and elemental stresses. When solving

the simulation, SAMSON allows the user to run the desired calculations locally, using a

personal machine’s central processing unit (CPU) and memory, or remotely, using the

HPC cluster’s multiple CPUs and greater memory. A complete picture of SAMSON’s

processes is provided in Figure 1.1.

2

Figure 1.1: SAMSON Process Map

3

This thesis details the research performed in all aspects of SAMSON’s development.

Namely, this thesis will first give a broad overview to the purpose and operation of

SAMSON in Chapter 1: Introduction and Chapter 2: Operation of SAMSON. Then, the

FEM techniques and theory used to solve simulations will be presented in Chapter 3: The

Finite Element Method Implementation. The creation and processing of 3D models from

free 3D modeling software will be discussed in Chapter 4: Input Geometry Creation and

Processing. The techniques for generating a 3D tetrahedral mesh will be presented in

Chapter 5: Meshing Implementation. The remote computing and parallel processing

techniques implemented in SAMSON will be detailed in Chapter 6: Cluster

Implementation, and finally, results from SAMSON will be compared to theory and

another FEM software package in Chapter 7: Results.

1.1 Purpose of SAMSON

The finite element method has become an increasingly popular numerical method for

solving problems in solid mechanics, fluid mechanics, heat transfer, and other

engineering fields. In both the professional and academic realms, the vast majority of

FEM simulations are performed using costly, locally installed software (e.g. ANSYS) or

equally expensive finite element modeling packages bundled with computer aided design

(CAD) programs (e.g. SolidWorks Simulation and Pro/ENGINEER Mechanica). FEM

can be computationally intensive and time consuming. In many cases, FEM simulations

require minutes, hours, or even days to perform using these locally installed software

packages. However, with the growing popularity of parallel processing and remote

computing, these long wait times may soon be a problem of the past.

4

Parallel processing using a HPC cluster has the potential to dramatically reduce the

computation time required to solve a FEM problem by allowing greater computational

resources to be applied to the simulation. Remote computing allows the user to access the

power of a HPC cluster from any location. This model is already being used by tools such

as WolframAlpha, an answer-engine developed by Wolfram Research that can remotely

access a HPC cluster of 10,000 CPUs to solve complex mathematical problems from a

webpage41. A tool able to perform complex FEM simulations using parallel processing

and remote computing would have many advantages in both academics and in the

professional world. Substantial steps towards this goal have been made in the

development of SAMSON. Parallel processing and remote computing techniques were

major components of the research to develop SAMSON.

One major application of SAMSON is its use in engineering education. Almost

without exception, basic undergraduate aerospace and mechanical engineering

curriculum includes coursework in mechanics of materials (i.e. solid mechanics or

strength of materials). The concepts of stress, strain, and deformation are fundamental in

a student’s ability to design, improve, and/or predict failure conditions for mechanical

systems. Traditionally, a solid mechanics class introduces these concepts as applied to

extremely fundamental cases. For example, most classes present beam theory to predict

bending stress, shear stress, and deflection in a cantilevered or simply supported beam

when subjected to idealized loading scenarios. Similarly, students will learn to determine

the principal stresses from a provided stress state and compare these values to simple

failure criteria. Due to the mathematical complexities of analyzing or transforming the

3D stress tensor, almost all examples seen by students are 2D approximations.

5

The average engineering student may complete a first course in solid mechanics with

little conceptual understanding of a practical, 3D stress state and how that stress state is a

direct result of loading seen on a mechanical system. Unfortunately, a student’s only

visualization of stress and strain may be a Mohr’s Circle diagram. Providing interactive

media which allows the student to visualize stress, strain, and deformation is one means

to facilitate comprehension. By imposing the requirement that such media be interactive

and widely accessible, and by noticing that the average university student is almost

continuously using portable electronic devices (i.e. smartphones, tablets, laptops, etc.), a

webpage-based engineering tool represents one obvious vehicle to encourage student

utilization of the media.

Electronic media has become extremely popular in engineering education where

complex and abstract mathematical models can most be effectively visualized through the

use of interactive media such as animations, graphics, and simulations3. As a result, many

educators incorporate electronic media in their teaching. An increasingly popular form of

electronic, internet-based media is the eBook. Here, eBook refers to an electronic book

consisting of text, images, and other interactive media, specifically not a scanned or

digitally reproduced copy of a print textbook. The benefits of an eBook as the primary or

supplemental text for education are numerous. One major advantage of an eBook over

traditional print material is that interactive media can be easily and cleanly incorporated

with the content to be accessed by students as new material is presented. Interactive

eBooks enable engineering educators to present course materials, concepts, and

comprehensive visualizations to students in a compelling manner that can enhance

education4. eBooks for many engineering courses are now readily available for use

6

online, including Statics5, Dynamics6, Thermodynamics7,8, Solid Mechanics3, and Fluid

Mechanics9. Additionally, thanks to the work of Morales4,10 and others, eBooks may soon

be easily accessible from a variety of devices including PCs, laptops, tablets, and mobile

devices. Morales has been working to develop an eBook platform for multiple electronic

devices (including handheld devices)4 and has discussed the effects of online eBook

publishing on the textbook publishing industry10.

It was desired to include a robust, FEM stress analysis tool (SAMSON) within the

appropriate content of a solid mechanics eBook. Providing such a tool serves to enhance

education through various functions. First, SAMSON allows students to visualize

deflections and stress fields as applied to 3D components. Secondly, SAMSON serves to

introduce students to the basic concepts of the finite element method and forces the

student to recognize all of the major steps taken in the FEM process namely, pre-

processing (discretization of the volume, application of boundary conditions and

loading), processing (solving the simulation for nodal displacements), and post-

processing (calculation of stress and strain from displacements).

In the professional environment, SAMSON represents substantial progress towards an

alternative to expensive, locally installed FEM packages. For many companies, instead of

purchasing a license for a FEM software package, there could be an economic advantage

in purchasing calculation time from a HPC cluster provider. The HPC cluster provider

could allow remote access to their cluster where, using parallel processing, FEM

simulations could be run more quickly and efficiently. By making this service available

online through a webpage, a client could obtain high-quality FEM results without any

overhead cost. Considering economies of scale, the HPC cluster provider could then offer

7

this service more cheaply than the cost of a traditional FEM analysis package. SAMSON

represents a concept design proving the feasibility of this model.

SAMSON is currently hosted on University of Oklahoma servers and has been made

available to use freely by anyone with an internet connection. The tool is browser based

and requires no program installation other than Flash Player. This makes the tool easily

accessible to educators wishing to demonstrate engineering concepts and prompt in-class

discussion of course material. Furthermore, it gives students and professionals access to

the tool from any location. Many universities provide students with access to locally

installed FEM packages through university managed computers. However, SAMSON can

be utilized from almost any machine, personal or public. The available option to perform

all calculations on a remote HPC cluster allows less powerful devices to act as an

interface for setting boundary conditions and viewing results without performing the

computationally intensive calculations locally.

Several free FEM applications have been created in the past, but there is a lack of

web-based FEM tools created using Flash or HTML5 or FEM tools integrated into course

material readily accessible to students. There are numerous free, open source FEM post-

and pre-processors available for download and install. However, these examples require a

local installation of the software and do not utilize a remote HPC cluster. Examples

include CalculiX11, Z88 Aurora12, and Object Oriented Finite Element Solver

(OOFEM)13. The requirement of a local software install limits the use of these programs

to Windows or Linux based machines with enough local computational power to

complete the required calculations. Dhondt and Wittig have provided a free online demo

of their FEM program CalculiX at http://www.onlinefeasolver.com/demo.php11. However

8

this is just an online demo of a program that was written to be locally installed (freely) on

a Linux machine. A full version of the Windows equivalent can be purchased under the

name bConverged14.

1.2 Contributions and accomplishments

In the development of SAMSON, an engineering tool was built that successfully

integrates 3D mesh generation, FEM analysis, and remote parallel processing into an

easily accessible, webpage-based application with an intuitive user interface. Key

accomplishments of this work include: developing methods to access FEM simulations

through a webpage, creating a user friendly input module (webpage-based graphical user

interface) allowing the user to define geometry and boundary conditions, developing an

automated job control system for web access to the remote cluster, developing efficient

parallel processing methods for performing the required calculations, writing original

algorithms for both 3D meshing and FEM analysis, setting guidelines for efficient core

utilization, and building the infrastructure to automatically display results to the user’s

webpage. While clusters are not new, they generally are used in batch mode where input

programs are submitted through specialized tools20. This method is not conducive for use

by the average engineer who lacks a strong computer science background. Thus, a new

method to interface with a HPC cluster was developed. SAMSON is designed for

engineering students, instructors, and professional with no experience in cluster parallel

computing or the finite element method.

SAMSON proves the feasibility of performing complex FEM simulations efficiently

by accessing remote a HPC cluster from a webpage. SAMSON appears to be the first

online FEM tool that utilizes a remote cluster, and SAMSON works with geometries

9

created by robust, free, and widely available 3D modelers. SAMSON was cleanly

incorporated into the course material for a basic mechanics of materials class and has the

potential to facilitate student understanding of 3D elasticity and stress states. SAMSON

was found to provide accurate results (see Chapter 7: Results) and is capable of solving

extremely large FEM simulations in a short amount of time. Finally, SAMSON is free to

access by anyone, anywhere in the world, even from portable devices such as

smartphones, laptops, and tablets.

It is also interesting to note that the author of this thesis had no knowledge of remote

or parallel processing, FEM techniques or FEM implementation, 3D mesh generation, or

3D modeling prior to the development of SAMSON. The author had no experience in

application development or creating a graphical user interface, and the author had never

programmed in ActionScript, C#, or C++ prior to building SAMSON. SAMSON was

built completely from scratch in the Engineering Media Lab at the University of

Oklahoma, and developing SAMSON to usable status that integrated the HPC cluster

required approximately six to eight months. This includes the time required for the author

to become familiar with developing Flash tools, learn the required FEM theory and

implementation methods, learn 3D meshing techniques, and develop remote parallel

processing procedures.

10

2 Operation of SAMSON

In order to illustrate the operation of SAMSON, a simple problem will be analyzed

for deflection using traditional beam theory and compared to results from SAMSON. The

operation and available user functions of SAMSON will be discussed as a sample

simulation is presented. This will illustrate the many steps and operation needed to set up

and solve the problem. The operation of SAMSON can be summarized in five steps. Each

step will be discussed in turn.

1. Loading a geometry file: load a user defined geometry or select a geometry

from the geometry library (Section 2.1)

2. Selecting boundary and loading conditions: select face(s) which will have

no displacement and face(s) which will have a uniform pressure (Section 2.2)

3. Meshing the object: build a FEM model composed of tetrahedral elements

based on the geometry loaded by the user (Section 2.3)

4. Inputting material properties and solving the simulation: provide required

constants and solve the system of equations for displacements and stresses

(Section 2.4)

5. Interacting with the results: view the results as displayed by SAMSON

(Section 2.5)

The example problem is given as follows. A 20 ft long wooden beam (Young’s

modulus 1,300 ksi, Poisson’s ratio 0.33) with a 1 ft by 1 ft square cross-section is

cantilevered on one end. A uniform load of 50 lb/ft is distributed across the length of the

11

beam for a total of 1000 lbs. The results from SAMSON are compared to beam theory in

Chapter 7: Results. The sample problem is shown in Figure 2.1.

Figure 2.1: Sample problem description

According to basic beam theory, it can be shown that the deflection, v, at any x-

distance from the fixed end is a function of only the beam length, L, the distributed load,

w, the material stiffness, E, and the cross-sectional moment of inertia, I,

� � �

� � � �

�	
�
� � � � 	 � � � � � (2.1)

For this particular problem, Equation 2.1 becomes

 � � � ����	 � �� � �� � � � � ��� � � � �	� ���� � � � (2.2)

where x and v are both in inches. The result obtained in Equation 2.2 is purely a

mathematical expression for the deflection at every point in the beam based on

elementary beam bending theory. In order to better visualize the deformation and

resulting stresses, the same problem can be analyzed using SAMSON. After presenting

the sample simulation, this thesis will continue to detail the theory used during each of

SAMSON’s processes.

At this point, the author would like to emphasize that SAMSON is still under

development. Currently, there are many limitations to the use of SAMSON. However,

great strides have been made in order to progress the tool to this level of refinement.

12

SAMSON was created using the Flash programming language, ActionScript, because of

its advantages in creating a graphical user interface. The compiled form of a Flash project

is easily embedded into a webpage, ensuring widespread accessibility. Flash also allows

access to remote scripts and third party media servers allowing a compiled executable to

be easily accessed on the HPC cluster. One disadvantage of ActionScript is that Flash

Player imposes a timeout restraint disallowing any local calculations taking longer than

60 seconds to perform. (Note that in most cases, Flash Player will disallow any

calculations requiring more than 15 seconds to perform. Compiler options can be

changed to lengthen this time to a maximum of 60 seconds.) However, the use of the

HPC cluster bypasses this timeout restraint because no single script inside the Flash

application is running while waiting for results from the cluster.

To access the tool, the user merely needs to open and direct a webpage to the solid

mechanics eBook accessible from eCourses.ou.edu. The mechanics eBook Multimedia

Engineering Mechanics of Materials Chapter 1: Stress and Strain contains a link to the

engineering tool in the section covering 3D Hooke’s Law2. The tool can also be accessed

directly at http://ecluster.ou.edu/apps/solid3d/default.aspx. Once the tool appears in the

webpage (see Figure 2.2), the user controls are located at the top of the window.

13

Figure 2.2: Tool interface with loaded geometry

14

2.1 Loading a geometry file

The user can choose to upload a geometry file from the local machine or download a

pre-created file from the geometry library. Figure 2.2 depicts the tool interface once a

geometry has been selected and loaded. The pictured object is a 20 ft beam with a 1 ft by

1 ft square cross-section. The geometry was created using the free version of Google

SketchUp and has been made available in the geometry library, a pull down menu

containing various pre-created geometry files.

Upon loading the geometry, the program reports the object domain to the user in

order to verify that the correct dimensions have been loaded. This is done primarily for

unit conversion purposes. Currently, the user is responsible for keeping track of all units.

As can be seen in Figure 2.2, the object domain is in the unit of inches. Note the

Papervision3D library was used for 3D rendering purposes. Papervision3D is an open

source real time 3D engine for Flash Player that was developed primarily for Flash-based

online games. As a result, all 3D rendering is done in a left-handed coordinate system as

is default in the Papervision3D library and many other 3D gaming engines15.

15

2.2 Selecting boundary and loading conditions

Once the geometry is loaded, the user is able to select any faces which are fixed and

any faces which have a uniform pressure applied to them. Fixed faces are fixed in all

three directions including all nodes on the selected face(s). This was done to facilitate the

development of SAMSON. The option to only fix selected faces in one or two directions

can be added as SAMSON is developed further. Loads are applied as a uniform pressure

to faces. The user only needs to input the pressure acting on the loaded face(s). The tool

will calculate the loaded area and apply forces to nodes as required to approximate the

uniform pressure acting on the selected face(s). All pressures act normal to the selected

surface with positive values acting away from the object interior. This too was done to

facilitate the development of SAMSON. The option to apply loads that are not normal to

a face and the option to apply a point load can be added as SAMSON is developed

further.

The user is able to select faces by clicking on them. SAMSON allows the user to

interact with the object using the mouse similar to other 3D modeling programs with

options to rotate the object about the origin, pan the object, and change the camera zoom.

The user is able to select multiple faces which are fixed or which are loaded. Faces

selected to have no displacement will be highlighted in red. Faces subjected to loading

will be highlighted in green. In the case of the sample problem, one end face was selected

to have no displacement and the top face was selected to have a uniform pressure acting

on it. The pressure was set to 0.34722 psi (equal to 1000 lbs acting over 240 in by 12 in

surface). The geometry from Figure 2.2 with the appropriate boundary conditions and

loading value is shown in Figure 2.3. (Note that 0.34722 psi equals 0.00034722 ksi.)

16

Figure 2.3: Geometry with selected boundary conditions

17

2.3 Meshing the object

After selecting the fixed and loaded faces, the user must then specify a level of mesh

refinement and generate a mesh for the object. The user can chose to generate an ordered

or random mesh depending on the geometry. In general, the ordered mesh is more

efficient for rectangular objects such as beams or plates. The random mesh is more suited

for irregular geometries. The ordered and random meshing routines will be discussed in

detail in Chapter 5: Meshing Implementation. The user may choose to run the meshing

routine on the local machine or using the HPC cluster. Generating a random mesh for

high mesh refinements often requires using the HPC cluster due to the local 60 second

time restraint imposed by Flash Player. Similarly, generating a mesh on complex

geometries will also require using the HPC cluster.

Once the mesh is generated, a series of view options will become available to the user

so that the mesh can be inspected. The user can choose to view any combination of the

surface mesh, original object, and the generated nodal locations. This allows students,

educators, and professionals using SAMSON to inspect the mesh. In education, these

options can be used to demonstrate the importance of and prompt discussion over quality

mesh generation. If the mesh is not satisfactory to the user, the user can then re-generate a

mesh with a higher or lower level of refinement or generate a completely new random

mesh of the same mesh refinement. SAMSON will output essential information to the

user including the number of nodes and elements as well as the total model volume. In

the case of the sample simulation, a relatively coarse, ordered mesh was generated as

pictured in Figure 2.4.

18

Figure 2.4: Geometry with coarse ordered mesh

19

2.4 Inputting material properties and solving the simulation

The user will be prompted to input the material stiffness, Poisson’s ratio, and loading

pressure (as force per unit area). Once this information is entered, the simulation can be

run. The user can choose to solve the simulation locally or using the HPC cluster. It will

often be required to use the cluster for any simulation containing more than a few

thousand degrees of freedom as this cannot be solved locally within the 60 second time

limit imposed by Flash Player.

In the case of the sample problem, the stiffness was set to 1,300 ksi. The Poisson’s

ratio was set to 0.33, and the uniform pressure was set to -3.4722 � 10-4 ksi, signifying

that the load is directed towards the beam. The FEM simulation was then run, finding

displacements at every nodal location and the elemental strains and stresses.

2.5 Interacting with the results

Once the simulation has been solved, various options will become available to view

and interact with the results. The user can choose to view the original object geometry,

the deformed surface mesh, the elemental stresses in the x, y, and z-directions, the

elemental von Mises stress invariant, and the displaced nodal locations scaled by a two

orders of magnitude. The user can select any combination of these options to display in

the view field.

By default, the deformed surface mesh will be displayed on top of the original

geometry. The deformed beam shape in the case of the sample problem is shown in

Figure 2.5. The deformation has been scaled by two orders of magnitude to make the

deflection more visible to the user.

20

Figure 2.5: Deformed mesh, deformation scaled by 100

21

Figure 2.5 illustrates how viewing deformation of the original object geometry can

help students to identify locations of high stress concentration. Deformations of simple

geometries such as beams can be compared to theory and discrepancies can be useful

sources of class discussion.

Figure 2.6 shows the elemental von Mises stresses seen at the fixed boundary of the

beam from the sample simulation. Note that each colored point represents the stress seen

in a tetrahedral element. Each tetrahedral is a constant-strain, constant-stress element.

Each colored point is placed at the centroid of the element it represents the most accurate

stress location available instead of extrapolating elemental stresses to nodal locations.

Figure 2.6 shows the von Mises stress state seen in each element, which appear as

expected. The areas of high stress can be easily compared to a recognizable color scale

ranging linearly from green to red. This allows students to visualize how stress varies in

all three dimensions as opposed to only surface stresses generally shown in many FEM

software packages. In Figure 2.6, high stress concentrations have been identified at the

upper and lower surfaces where beam bending has placed these surfaces in tension and

compression respectively.

22

Figure 2.6: Von Mises elemental stress states

23

Once the simulation has been solved, the user is able to save the results in the form of

a text file to the local machine. The savable results include the original node locations

created by the meshing routing, the tetrahedral elements (nodal connectivity) represented

by four nodes, the nodal displacements corresponding to each node, the elemental strains

and stresses (both normal and shear), and the von Mises stress invariant. The text file had

been arranged so that it can be easily delimited and imported into standard spreadsheet

software.

24

3 The Finite Element Method Implementation

Now that the basic operation of SAMSON has been discussed, a more detailed

discussion of the tool’s operations will be presented. First, the FEM techniques used to

solve for displacements, stresses, and strains will be detailed in Chapter 3: The Finite

Element Method Implementation. The FEM techniques discussed will assume that the

input geometry has already been loaded and discretized into elements, or meshed.

Loading the geometry 3D models will be discussed in Chapter 4: Input Geometry

Creation and Processing. Meshing processes will be discussed in more detail in a later

Chapter 5: Meshing Implementation. How SAMSON accesses the HPC cluster will be

presented in Chapter 6: Cluster Implementation.

3.1 An introduction to the finite element method

The finite element method is a numerical technique for finding approximate solutions

to engineering and mathematical physics problems. FEM is typically used to analyze

structural response to loading, heat transfer, fluid flow, mass transport, and

electromagnetic potential21. Historically, these problems have been solved analytically

using ordinary or partial differential equations. However, for problems involving

complicated geometries, loadings, boundary conditions, and/or material properties, it is

generally not possible or extremely difficult to obtain analytical mathematical solutions.

As a result, scientist and engineers often rely on numerical techniques, such as the finite

element method, for acceptable solutions. Zienkiewicz, Taylor, and Zhu21 generalized

FEM elegantly as

25

The limitations of the human mind are such that it cannot grasp the behavior

of its complex surroundings and creations in one operation. Thus the process of

subdividing all systems into their individual components or ‘elements’, whose

behavior is readily understood and then rebuilding the original system from such

components to study its behavior is a natural way in which the engineer, the

scientist, or even the economists proceeds.

The finite element formulation results in a system of simultaneous algebraic

equations for solution, rather than requiring the solution of differential equations.

However, FEM yields approximate results at a discrete number of locations in the

continuum. This process of modeling a body by dividing it into an equivalent system of

elements interconnected at nodal points common to two or more elements is often

referred to as discretization. Thus, in FEM, instead of solving the problem for the entire

body in one operation, one formulates the equations for each finite element and combines

them to obtain a global solution for the whole body. With the advent of digital computers,

problems involving the discretization of continuous media can be readily solved, even

with a large numbers of elements.

The use of finite elements in structural applications began with the pioneering work

of Hrenikoff (1941), McHenry (1943), and Newmark (1949) in so-called structural

analogue substitution21. In this method, a lattice of line elements is used to approximate a

continuous solid and is solved for stresses seen in each element. Since this time, FEM has

continued to mature with increasingly complex, solid elements capable of having many

degrees of freedom. Stress analysis in 3D is often required for bodies or structures that

require more precise analysis than is possible through 2D or axisymmetric analysis18.

26

Examples include thick-wall pressure vessels, bodies with asymmetric loading or a

combination of loading in multiple directions, or components with complex, asymmetric

geometries. In the case of SAMSON, FEM was used to predict deformation, strain, and

stress seen in solid, linear elastic, isotropic material objects.

3.2 FEM theory utilized by SAMSON

3.2.1 Stress and strain in three dimensions

Consider an infinitesimal 3D element with dimensions dx, dy, and dz in the Cartesian

coordinate system. The element is subjected to a general 3D stress state as shown in

Figure 3.1.

x, u

y, v

z, w

� x

� y

� z

� xy

� xz
� zx

� zy

� yz

� yx

Figure 3.1: 3D Stresses on an element

27

By definition, normal stresses are perpendicular to the faces of the element and shear

stresses act in the planes of the element faces. Normal stresses are denoted as � , and shear

stresses are denoted as � . From moment equilibrium of the element, it can be shown that

that there are only three independent shear stresses along with the three normal stresses18.

 !" � "! "# � #" !# � #! (3.1)

Displacements in the x, y, and z-directions are denoted as u, v, and w respectively. The

elemental normal strains, � , are obtained from the displacements u, v, and w18.

$! �

%&
%�

 $" �
%�
%'

 $# �
%�
%(

 (3.2)

And the engineering shear strains, � , are defined as follows18.

) !" �

%&
%'

�
%�
%�

�) "!) "# �
%�
%(

�
%�
%'

�)#") !# �
%&
%(

�
%�
%�

�)#! (3.3)

A stress state and its corresponding strain state are then second order tensors and are

often presented in their tensor forms22.

*+, � � -
+! !" !#
 "! +" "#
 #! #" +#

. *$, � �

/
0
0
0
0
1 $!

�
�

) !"
�
�

) !#

�
�

) "! $"
�
�

) "#

�
�

)#!
�
�

)#" $# 2
3
3
3
3
4

 (3.4)

Here, stress and strain are not unrelated. In tensor notation, the stress and strain tensors

are related by the material stiffness, a fourth order tensor commonly denoted as C23.

 +56 � �75689$89 (3.5)

28

In general anisotropic materials, the material stiffness tensor can have up to 81

independent terms, but in isotropic materials, the stiffness tensor simplifies down to 36

terms, many of which are interdependent or zero23. Therefore, due to the symmetry of the

tensors given in Equation 3.4, it is often convenient to work with the column vectors of

six stresses and strains instead of the full 3x3 matrices18.

:+; � �

<
=
>

=
?

+!
+"
+#
 !"
 "#
 #! @

=
A

=
B

 :$; �

<
=
>

=
?

$!
$"
$#
) !"
) "#
)#! @

=
A

=
B

 (3.6)

With stresses and strains written in these forms, the material stiffness can be rewritten

into an equivalent 6x6 matrix23. Here, [D] is material constitutive matrix defined by the

material Young’s modulus, E, and Poisson’s ratio, � 18.

*C, �

�� � D��� � �D�
�

/
0
0
0
0
0
0
0
1
� � D D D

� � D D
� � D

� ���������� � ���������� �
� ���������� � ���������� �
����������� ����������� �

E'FFGHI'

� � �D
�

� �

� � �D
�

�

� � � D
� 2

3
3
3
3
3
3
3
4

 (3.7)

The stress and strain for an isotropic material are then related by the material constitutive

matrix18.

 :+; � � *C,:$; (3.8)

29

3.2.2 Element selection, the tetrahedral element

The tetrahedral stress element was selected as the 3D element for use in FEM solver.

The tetrahedral element was selected for two primary reasons. The tetrahedral element

has distinct advantages in mesh generation using 3D Delaunay tetrahedralization and

orderly discretization, and the tetrahedron is a linear, constant-strain element which

allows for closed form calculation of the elemental stiffness matrix without requiring

numerical integration18. Other possible 3D elements include the linear hexahedral

element formed from 8 corner nodes and higher order tetrahedral elements with Jacobian

points included along the tetrahedral edges to allow for non-linear deformation in the

element. While these elements may provide more accurate results for few elements, they

require numerical integration to form the elemental stiffness matrices. Similar results can

be obtained my generating a greater number of linear tetrahedral elements. A general

solid tetrahedral element in the Cartesian coordinate system is shown in Figure 3.2.

z

x

y

1

2

3

4

Figure 3.2: General solid tetrahedral element

30

The signed volume of the element, V, can be found by calculating the following

determinate based on the nodal coordinates18.

� J � K

� � �
� � �

' � (�
' � (�

� � �
� � �

' � (�
' � (�

L (3.9)

It can be shown that the linear shape functions, N1, N2, N3, and N4 take the following

form18.

M� �

N� � O� � �) � ' � P� (
� J

 M� �
N� � O� � �) � ' � P� (

� J

(3.10)

M� �
N� � O� � �) � ' � P� (

� J
 M� �

N� � O� � �) � ' � P� (
� J

Here, the shape function coefficients � i, � i, � i, and � i are determined from the

displacement function and are dependent on nodal coordinates18.

N� � � -

� � ' � (�
� � ' � (�
� � ' � (�

. O� � � -
� ' � (�
� ' � (�
� ' � (�

.

(3.11)
) � � � -

� � � (�
� � � (�
� � � (�

. P� � � -
� � � ' �
� � � ' �
� � � ' �

.

and

N� � � -

� � ' � (�
� � ' � (�
� � ' � (�

. O� � � -
� ' � (�
� ' � (�
� ' � (�

.

(3.12)

) � � � -
� � � (�
� � � (�
� � � (�

. P� � -
� � � ' �
� � � ' �
� � � ' �

.

31

and

N� � � -

� � ' � (�
� � ' � (�
� � ' � (�

. O� � � -
� ' � (�
� ' � (�
� ' � (�

.

(3.13)
) � � � -

� � � (�
� � � (�
� � � (�

. P� � � �-
� � � ' �
� � � ' �
� � � ' �

.

and

N� � � -

� � ' � (�
� � ' � (�
� � ' � (�

. O� � � -
� ' � (�
� ' � (�
� ' � (�

.

(3.14)
) � � � -

� � � (�
� � � (�
� � � (�

. P� � -
� � � ' �
� � � ' �
� � � ' �

.

The shape function matrix, [N] , is given by the following18.

*M, � � -

M� � �
� M� �
� � M�

����
M� � �
� M� �
� � M�

����
M� � �
� M� �
� � M�

����
M� � �
� M� �
� � M�

. (3.15)

It can then be shown that the element stiffness matrix, [k] , is defined without numerical

integration and takes the following form18.

 *Q, � �*R,S*C,*R,J (3.16)

And the [B] matrix is defined as follows18.

*R, �
�

�J
�

/
0
0
0
0
1
O� � �
�) � �
� � P �

) � O� �
� P�) �

P� � O�

����

O� � �
�) � �
� � P �

) � O� �
� P�) �

P� � O�

����

O� � �
�) � �
� � P �

) � O� �
� P�) �

P� � O�

����

O� � �
�) � �
� � P �

) � O� �
� P�) �

P� � O� 2
3
3
3
3
4

 (3.17)

32

The element stiffness matrices can then be combined to create the global stiffness matrix,

[K] . The global stiffness matrix is then inverted and multiplied by the forces externally

applied to each node, {F} , to find the nodal displacements, {d}.

 :T; � � *U,:V; (3.18)

Once the nodal displacements are found, they are used to back solve for the elemental

strains in each element18.

 :$; � � *R,:V; (3.19)

The elemental strains can then be used to solve for the elemental stresses using the

relationship in Equation 3.818. The elemental stresses can then be combined into the

elemental von Mises stress invariant24.

+WX � �Y
�
�

Z[+! � +" \
�

� [+" � +#\
�

� � +# � +! � � � � [!"
� � "#

� � #!
� \] (3.20)

3.2.3 Matrix analysis techniques

Due to its nature of formulation, the global stiffness matrix will be a positive definite,

banded, square matrix of size [3n x 3n], where n is the number of nodes. The size of the

global stiffness matrix is often referred to as the degrees of freedom. Here, each node has

three degrees of freedom (displacement in the x, y, and z directions), hence a matrix of

size [3n x 3n]. Due to the positive definite, banded form of the global stiffness matrix, the

entire matrix does not need to be explicitly formed and saved in memory. Instead, only

the non-zero terms of the upper triangle can be stored using a modified Cholesky

decomposition19. This technique greatly reduces the required memory for storing the

33

global stiffness matrix and allows for efficient inversion. This method is employed by

SAMSON, and the inversion of global stiffness matrix is performed on this “banded

global stiffness submatrix.” For example, a full global stiffness matrix may be populated

similarly to the generic banded matrix given in Figure 3.3.

Figure 3.3: Sample full global stiffness

In this case, it is redundant to store any information contained below the matrix

diagonal as this information is also contained above the diagonal. Similarly, the terms

outside of the band width are known to be zero, so their storage is also unnecessary. If the

maximum difference in numbering between nodes in the same element is � ^ � Q � _`! ,

then it can be shown that the band width of the matrix is � � *� ^ � Q � _`! � � , . When

SAMSON solves simulations both locally and using the remote HPC cluster, it only

34

stores the upper band in memory. For the array shown in Figure 3.3, the Cholesky

factorization is depicted as a 2D array in Figure 3.419. When solved using the cluster, the

banded global stiffness submatrix is stored as a single column in a format required for

utilizing multiple core solution techniques. This process will be covered in more detail in

Chapter 6: Cluster Implementation.

Figure 3.4: Global stiffness upper band stored as a rectangular array

The inversion of this submatrix to be multiplied by the applied forces (as given in

Equation 3.18) is performed locally using the Cholesky method taken directly from

Weaver and Gere19. The inversion of the submatrix is performed remotely using pre-

constructed multicore routines that can utilize the HPC cluster’s multicore processors

35

through parallel processing25. A basic process map of the FEM implementation procedure

is given in Figure 3.5. This summarizes the steps taken by SAMSON in the FEM solver.

1. nodal locations
2. nodal classifications
3. nodal connectivity

Input Mesh:

Build banded global
stiffness matrix based
on node locations and

material properties

Apply boundary
conditions and loads to
nodes based on input
geometry to simplify

{F} = [K]{d}

Invert stiffness matrix
and solve for

displacements

Server: multicore MKL
routines

Local: Cholesky method

1. nodal displacements
2. elemental strains
3. elemental stresses

Output:

1

3

2

4
Using displacements,

back solve for elemental
stresses and strains

1. loaded faces
2. fixed faces

Input Geometry:

Figure 3.5: FEM process map

36

4 Input Geometry Creation and Processing

SAMSON allows the user to import geometries in the COLLADA format, an open

standard XML (Extensible Markup Language) schema for exchanging digital assets

among various graphic software applications1. The COLLADA file format was selected

as it is one of the most widespread and popular file formats among free 3D modeling

software packages, including Google SketchUp and Blender. When paired with one of

these modeling programs, SAMSON provides a costless alternative to commercially

available, expensive, locally run 3D CAD/FEM packages. It was desired to allow

SAMSON to import geometries from already widely available 3D modeling software so

that it was not required to build a complete 3D modeling application from the ground up.

3D modeling has already been widely programmed, and there was no need to reinvent the

wheel. The purpose of this Chapter is to detail the COLLADA file format as this

information is not readily available in books. This Chapter will delve into extreme detail

of the XML file format. To illustrate the COLLADA geometry, the geometry used in the

sample simulation (Figure 2.1) was imported in the following manner.

4.1 Creation of the custom geometry

The desired geometry was first created using the free version of Google SketchUp26.

Google SketchUp is available for download for Windows XP/Vista/7 and Mac OS X at

http://sketchup.google.com/intl/en/download/26. In this case, a simple 1x1 ft square was

extruded into a 20 ft beam. Once the custom geometry has been created, the option to

export the geometry as a 3D model can be access from the file menu26. The COLLADA

file format is the default file type for 3D model export in SketchUp26. This process is

illustrated in Figure 4.1.

37

Figure 4.1: Custom geometry created using Google SketchUp26

38

4.2 Analyzing the 3D model file

In reality, a COLLADA file is a XML (text) file formatted in the COLLADA schema

for exchanging digital assets among various graphic software applications1. A

COLLADA file follows a standardized format to convey information needed for 3D

rendering using standard XML syntax. For example, if the COLLADA file exported in

Figure 4.1 was opened in a text editor, the following information would be contained in

the file26.

<?xml version="1.0" encoding="UTF-8" standalone="no " ?>
<COLLADA xmlns =" http://www.collada.org/2005/11/COLLADASchema "
 version =" 1.4.1 ">
 <asset >
 <contributor >
 <authoring_tool >Google SketchUp 8.0.4811 </ authoring_tool >
 </ contributor >
 <created >2011-12-20T16:50:35Z </ created >
 <modified >2011-12-20T16:50:35Z </ modified >
 <unit meter =" 0.02539999969303608 " name =" inch " />
 <up_axis >Z_UP</ up_axis >
 </ asset >
 <library_visual_scenes >
 <visual_scene id =" ID1 ">
 <node name =" SketchUp ">
 <instance_geometry url =" #ID2 ">
 <bind_material >
 <technique_common >
 <instance_material symbol =" Material2 " target =" #ID4 ">
 <bind_vertex_input semantic =" UVSET0"

input_semantic =" TEXCOORD" input_set =" 0" />
 </ instance_material >
 </ technique_common >
 </ bind_material >
 </ instance_geometry >
 </ node >
 </ visual_scene >
 </ library_visual_scenes >
 <library_geometries >
 <geometry id =" ID2 ">
 <mesh>
 <source id =" ID5 ">
 <float_array id =" ID8 " count =" 72"> 12 12 0 0 0 0 0 12 0 12 0 0

 12 12 0 12 0 240 12 0 0 12 12 240 12 0 240 0 0 0 12 0 0 0 0
 240 0 12 240 0 0 0 0 0 240 0 12 0 0 12 240 12 12 0 0 12 0 12
 12 240 12 0 240 0 12 240 0 0 240 12 12 240 </ float_array >

 <technique_common >
 <accessor count =" 24" source =" #ID8 " stride =" 3">
 <param name =" X" type =" float " />

39

 <param name =" Y" type =" float " />
 <param name =" Z" type =" float " />
 </ accessor >
 </ technique_common >
 </ source >
 <source id =" ID6 ">
 <float_array id =" ID9 " count =" 72"> 0 0 -1 0 0 -1 0 0 -1 0 0 -1

 1 0 0 1 0 0 1 0 0 1 0 0 -0 -1 -0 -0 -1 -0 -0 - 1 -0 -0 -1 -0
 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -0 1 0 -0 1 0 -0 1 0 -0 1 0 0 0
 1 0 0 1 0 0 1 0 0 1 </ float_array >

 <technique_common >
 <accessor count =" 24" source =" #ID9 " stride =" 3">
 <param name =" X" type =" float " />
 <param name =" Y" type =" float " />
 <param name =" Z" type =" float " />
 </ accessor >
 </ technique_common >
 </ source >
 <vertices id =" ID7 ">
 <input semantic =" POSITION" source =" #ID5 " />
 <input semantic =" NORMAL" source =" #ID6 " />
 </ vertices >
 <triangles count =" 12" material =" Material2 ">
 <input offset =" 0" semantic =" VERTEX" source =" #ID7 " />
 <p>0 1 2 1 0 3 4 5 6 5 4 7 8 9 10 9 8 11 12 13 14 13 1 2 15 16

 17 18 17 16 19 20 21 22 21 20 23 </ p>
 </ triangles >
 </ mesh>
 </ geometry >
 </ library_geometries >
 <library_materials >
 <material id =" ID4 " name =" material_0 ">
 <instance_effect url =" #ID3 " />
 </ material >
 </ library_materials >
 <library_effects >
 <effect id =" ID3 ">
 <profile_COMMON >
 <technique sid =" COMMON">
 <lambert >
 <diffuse >
 <color >1 1 1 1 </ color >
 </ diffuse >
 </ lambert >
 </ technique >
 </ profile_COMMON >
 </ effect >
 </ library_effects >
 <scene >
 <instance_visual_scene url =" #ID1 " />
 </ scene >
</ COLLADA>

40

The data contained in this file is fairly simple to parse back into usable information

once the schema is understood. The characters which make up a COLLADA/XML

document are divided into markup and content27. Markup and content are distinguished

by simple syntactic rules. All strings which constitute markup either begin with the

character ‘<’ and end with a ‘>’, or begin with an ampersand, ‘&’, and end with a

semicolon, ‘;’27. Any string that is not markup is then content. Markup strings are often

referred to as tags. There are three types of tags: start-tags, for example <section> , end-

tags, for example </section> , and empty-element tags, for example <line-break/> 27.

Any logical entry either begins with a start-tag and ends with a matching end-tag or

consists only of an empty-element tag. The characters between the start- and end-tags are

the element's content, and may contain markup, including other elements, which are

called child elements. Additionally, markup may contain attributes. An attribute is a

markup construct consisting of a name/value pair that exists within a start-tag or empty-

element tag. To illustrate these concepts, consider the simple XML entry.

<parent_element >
 <child_element1 name =" A">
 Content1
 </ child_element1 >
 < child_element2 name =" B">
 Content2
 </ child_element2 >
</ parent_element >

As can be seen, this entry has one parent element containing two child elements, and

each child element contains some content and an attribute called name. The same analysis

can be applied to the COLLADA 3D model presented previously. The parent element,

<COLLADA>, has six child elements, <asset> , <library_visual_scenes> ,

41

<library_geometries> , <library_materials> , <library_effects> , and <scene> .

This can be easily seen in the following abbreviated form of the XML file.

<COLLADA>
 <asset >
 ...
 </ asset >
 <library_visual_scenes >
 ...
 </ library_visual_scenes >
 <library_geometries >
 ...
 </ library_geometries >
 <library_materials >
 ...
 </ library_materials >
 <library_effects >
 ...
 </ library_effects >
 <scene >
 ...
 </ scene >
</ COLLADA>

Here, one can find information about the file origin, the visual scene, the object

geometry, the object material, and any visual effects on the object. It is important to note

that, in 3D rendering, the term “material” refers to the texture or image used to wrap the

object. It does not refer to material in any engineering sense. Fortunately, all of this

information is not necessary to define a 3D geometry. All the information to completely

define the geometry of the object is contained under the element

<library_geometries> . This element needs to be discussed in further detail as the

standard in which geometry information is stored is not immediately intuitive.

Notice that the first child element of <library_geometries> is <geometry

id="ID2"> . When Google SketchUp exports a file as a COLLADA, it separates the

information from multiple extrusions into separate geometry tags. For a simple

rectangular prism, there is only one extrusion and therefore only one geometry tag. For

42

more complex shapes there can be many. Geometries with multiple extrusions will

contain multiple <geometry id="ID#"> child elements, each with an individual id

attribute. In each geometry, the only content of interest is contained in two

<float_array id="ID#"> tags and one <p> tag. The first float array contains the x, y,

and z locations of the geometry vertices in the following form.

<float_array id =" ID# " count =" #">
 x1 y1 z1 x2 y2 z2 x3 y3 z3 ...
</ float_array >

The second float array contains a normal vector associated with each vertex split into

components. It has the following form.

<float_array id =" ID# " count =" #">
 n1_x n1_y n2_z n2_x n2_y n2_z n3_x n3_y n3_z ...
</ float_array >

The final point array contains information about the triangles formed from the vertices.

Each number corresponds to an address in the vertices array, and three vertices

completely define a triangle. It has the following form.

<p>
 t1_1 t1_2 t1_3 t2_1 t2_2 t2_3 t3_1 t3_2 t3_3 ...
</ p>

For example, the 3D model presented previously contains geometry information

about 24 vertices as summarized in Table 4.1. The 3D model also contains information

about 12 triangles as summarized in Table 4.2. The number of triangles matches what

would be expected to define a rectangular prism with two triangles to define each of the

prism’s six faces. However, the number of vertices may appear counterintuitive as only

eight vertices are required to completely define a rectangular prism. However, in the

43

COLLADA schema, each vertex has an associated normal vector that defines the triangle

normal vector the vertex belongs to. In this case, some vertices are repeated multiple

times as these vertices are used in multiple triangles with different normal vector.

Table 4.1: COLLADA vertex information

Vertex Location Normal Vertex Location Normal

0 (12, 12, 0) (0, 0, -1) 12 (0, 12, 240) (-1, 0, 0)

1 (0, 0, 0) (0, 0, -1) 13 (0, 0, 0) (-1, 0, 0)

2 (0, 12, 0) (0, 0, -1) 14 (0, 0, 240) (-1, 0, 0)

3 (12, 0, 0) (0, 0, -1) 15 (0, 12, 0) (-1, 0, 0)

4 (12, 12, 0) (1, 0, 0) 16 (0, 12, 240) (0, 1, 0)

5 (12, 0, 240) (1, 0, 0) 17 (12, 12, 0) (0, 1, 0)

6 (12, 0, 0) (1, 0, 0) 18 (0, 12, 0) (0, 1, 0)

7 (12, 12, 240) (1, 0, 0) 19 (12, 12, 240) (0, 1, 0)

8 (12, 0, 240) (0, -1, 0) 20 (12, 0, 240) (0, 0, 1)

9 (0, 0, 0) (0, -1, 0) 21 (0, 12, 240) (0, 0, 1)

10 (12, 0, 0) (0, -1, 0) 22 (0, 0, 240) (0, 0, 1)

11 (0, 0, 240) (0, -1, 0) 23 (12, 12, 240) (0, 0, 1)

Table 4.2: COLLADA triangle information

Triangle Vertices Triangle Vertices

0 0 1 2 6 12 13 14

1 1 0 3 7 13 12 15

2 4 5 6 8 16 17 18

3 5 4 7 9 17 16 19

4 8 9 10 10 20 21 22

5 9 8 11 11 21 20 23

With this basic understanding of the COLLADA schema, the necessary information

can be easily extracted by searching for key markup tags. SAMSON will import the

COLLADA file as a data string and search that string for a key substrings, namely

<geometry , <float_array , and <p. The number of times that <geometry appears in the

string corresponds to the number of extrusions in the object and therefore the number of

44

vertex arrays, normal vector arrays, and triangle arrays that need to be imported. From

any appearance of <geometry , the first <float_array corresponds to a vertex array, and

the second <float_array corresponds to a normal vector array. Then the appearance of

<p corresponds to a triangle array. All this information can be extracted, split into arrays

delimited by the space character, and cast from a string to either a floating point decimal

or an integer. This process captures all the geometry information in the COLLADA file

while ignoring all other information which is unnecessary in SAMSON.

Duplicating the vertices and associating a normal vector with each vertex is redundant

and is not conducive to mesh generation techniques. SAMSON will then reformat the

arrays of vertices, normal vectors, and triangles. Duplicate vertices are removed, and

normal vectors are assigned to triangles instead of vertices. The geometry information as

stored by SAMSON will then take the form as seen in Table 4.3 and Table 4.4.

Table 4.3: Obtained vertex information

Vertex Location Vertex Location

0 (12, 12, 0) 4 (12, 0, 240)

1 (0, 0, 0) 5 (12, 12, 240)

2 (0, 12, 0) 6 (0, 0, 240)

3 (12, 0, 0) 7 (0, 12, 240)

Table 4.4: Obtained triangle information

Triangle Points Normal Triangle Points Normal

0 0 1 2 (0, 0, -1) 6 7 1 6 (-1, 0, 0)

1 1 0 3 (0, 0, -1) 7 1 7 2 (-1, 0, 0)

2 0 4 3 (1, 0, 0) 8 7 0 2 (0, 1, 0)

3 4 0 5 (1, 0, 0) 9 0 7 5 (0, 1, 0)

4 4 1 3 (0, -1, 0) 10 4 7 6 (0, 0, 1)

5 1 4 6 (0, -1, 0) 11 7 4 5 (0, 0, 1)

45

5 Meshing Implementation

In 1992, Joe F. Thompson, an aerospace engineer who commanded a multi-institutional

mesh generation effort called the National Grid Project, wrote the following29.

An essential element of the numerical solution of partial differential equations

on general regions is the construction of a grid (mesh) on which to represent the

equations in finite form. . . . [A]t present it can take orders of magnitude more

man-hours to construct the grid than it does to perform and analyze the PDE

solution on the grid. This is especially true now that PDE codes of wide

applicability are becoming available, and grid generation has been cited

repeatedly as being a major pacing item. The PDE codes now available typically

require much less esoteric expertise of the knowledgeable user than do the grid

generation codes.

The author of this thesis found Thompson’s words to be especially true throughout

the development of SAMSON. The majority of the time spent in the development of

SAMSON was spent on mesh generation algorithms, and, of all the developed

algorithms, meshing continues to represent the area most in need of improvement.

5.1 An introduction to mesh generation

The automatic mesh generation problem involves dividing a physical domain with a

complicated geometry into smaller, simpler pieces such as tetrahedra. In this case, the

object domain is complete defined by the surface triangles extracted from the COLLADA

3D model. The only information available to the meshing algorithm includes the surface

vertex locations, the surface triangles each defined by three surface vertices, and an

46

outward pointing normal vector for each surface triangle. The algorithm must be able to

volumetrically mesh an arbitrary object domain with just the surface information defining

the shape of the geometry, and the generated mesh must satisfy nearly contradictory

requirements. It must conform to and completely redefine the surface information

obtained from the COLLADA model; its elements cannot be too large or too numerous29;

and it must be composed of elements with favorable shapes29. “Favorable shapes” include

elements that are as close to equilateral and equilinear as possible (regular tetrahedral)

and exclude elements that are long and/or thin (e.g. shaped like a needle or a kite) 29.

Examples of “favorable” and “unfavorable” elements are given in Figure 5.1.

Good Element Bad Elements

Figure 5.1: Quality of tetrahedral elements

One measure of element quality is the aspect ratio. The aspect ratio, A, is a

measurement that should equal one for a regular tetrahedra and greater than one for non-

regular tetrahedra. Various definitions of aspect ratio have been used by authors of mesh

refinement algorithms. One common definition for the aspect ratio of a tetrahedron is its

longest edge length divided by its shortest edge length. SolidWorks Simulation, a FEM

software package, defines the aspect ratio of a tetrahedron as the ratio between the

longest edge and the shortest normal dropped from a vertex to the opposite face

47

normalized with respect to a perfect tetrahedral42. Another definition is provided by

Freitag and Knupp 43.

a �

b_`! c �
J

� d b5
�

e

5f �

 (5.1)

Here, l i are the element side lengths; lmax is the longest side length; and V is the element

volume.

The pioneering work in mesh generation was done by researchers in several branches

of engineering, most notably solid mechanics and fluid dynamics during the 1980s29. This

period brought forth most of the techniques used today including the octree, Delaunay,

and advancing front methods for mesh generation29. One of the algorithms developed for

SAMSON is based on a simple incremental Delaunay method developed during the

infancy of mesh generation. Unfortunately, nearly all the algorithms developed during

this period are inherently unstable, and produce unfavorable elements when confronted

by complex domain geometries, stringent demands on element shape, or numerically

imprecise CAD models29.

During the 1990s and 2000s, these problems attracted the interest of researchers in

computational geometry, a branch of theoretical computer science29. Computational

geometers strove for “provably good mesh generation,” the design of algorithms that are

mathematically guaranteed to produce a mesh with favorable elements, even for arbitrary

domain geometries29. Jonathan Shewchuk, a professor of computer science at UC

Berkely, argues that during the early 2000s, mesh generation became a more active

academic field than the finite element methods that gave birth to it29. Schewchuk argues

48

that the videogame and motion picture industries now economically exceed the finite

element industries as users of meshing programs. Today, almost all current research in

mesh generation is being completed by computational geometers. The theory and

implementation of modern mesh generation routines were found to be beyond the scope

of this thesis where simpler forms of mesh generation were found to be satisfactory. As

previously mentioned, SAMSON allows for the generation of ordered and random

meshes. The algorithms developed to generate both will now be presented.

The goal of the meshing algorithms is to take a generate a set of n points given by

P1, P2, P3, … , Pi, … , Pn : Pi = { xi, yi, zi }

and generate a list of r tetrahedral elements given by

E1, E2, E3, … , Ei, … , Er : Ei = { Pj, Pk, Pl, Pm }.

Here, j, k, l, and m each correspond to one point in the tetrahedral element Ei as

referenced back to the point set P. It is important to note that the ordering of j, k, l, and m

for each element is extremely important. The ordering determines the sign of the volume

(Equation 3.9) and must be consistent for every element to implement FEM. Using the

right-hand rule, the normal vector from the face formed from Pj, Pk, and Pl can point

towards or away from Pm. In order for the volume calculated by Equation 3.9 to be

positive, this normal vector should point towards Pm. This convention was implemented

in SAMSON. All elements are stored such that their volumes are positive as calculated

by Equation 3.9. The signed volume convention including the normal vectors formed

from Pj, Pk, and Pl is shown in Figure 5.2.

49

z

x

y

j

l

k
m

z

x

y

j

k

l
m

Positive Volume Negative Volume

Figure 5.2: Signed volume convention of Ei = { Pj, Pk, Pl, Pm }

The ordered and random meshing routines differ in how they generate the point set.

The ordered meshing routine places points in a precise method where elements can be

immediately formed based on an understanding of the point numbering. The random

meshing algorithm generates points randomly, numbers the points, and then generated

elements from these points.

5.2 Ordered mesh generation

Of the two meshing algorithms, the ordered mesh generation algorithm is

conceptually simpler. Therefore, the developed ordered meshing routine will be presented

first. In general, the ordered mesh is more efficient for rectangular objects such as beams

or plates but can be used on more general geometries. To demonstrate the steps

performed in creating an ordered mesh, consider the geometry shown in Figure 5.3. The

geometry is a simple extruded ellipse created using the free version of Google SketchUp.

The model contains 96 vertices and 92 triangular surface faces26.

50

Figure 5.3: Extruded ellipse from Google SketchUp

The ordered meshing routine discretizes the volume inhabited by the geometry into

rectangular prisms. To do this, the routine will cycle through all the vertices (96 in this

case) and determine the six extreme values: the minimum x, y, and z-coordinates and the

maximum x, y, and z-coordinates. From this, the routine will construct the bounding box

completely containing the object geometry. This entire bounding box will then be

discretized into smaller rectangular prisms as shown Figure 5.4.

Figure 5.4: Constructed and discretized bounding box for extruded ellipse

51

The discretization of the bounding box will have varying levels of grid density

depending on the mesh refinement input from the user. The mesh refinement dictates the

number of rectangular prisms that will lie along the shortest length of the bounding box.

For example, the discretization shown in Figure 5.4 has three rectangular prisms that lie

online the shortest bounding box measurement, corresponding to a mesh refinement value

of 3. The number of rectangular prisms along the other two lengths will then be

calculated so that each rectangular prism is as close to a cube as possible. This ensures

that the generated mesh will only contain elements with favorable aspect ratios.

Each corner of a rectangular prism then has the potential to become nodal point in the

final generated mesh if the point is found to be inside or near the surface of the geometry.

Nodal points found to be outside the geometry will be discarded. The vector distance

from each potential nodal point to the closest location on any geometry surface triangle is

calculated30. In Figure 5.5, the vector distance from and arbitrary point P to point B, the

closest point on the surface of the object to point P, is given by the vector (B – P).

Figure 5.5: Testing for point location in relation to an arbitrary geometry

52

The sign of the dot product of (B – P) with the triangle normal vector, gh, then

indicates if the point is inside or outside of the geometry. If (B – P) i gh < 0, then the point

is outside of the geometry. If (B – P) i gh > 0, then the point is inside of the geometry. If

(B – P) i gh = 0, then the point is on the geometry surface. For more information on

locating point B, see Appendix A: Finding the closest point on a triangle in 3D. Based on

the value of the of the dot product (B – P) i gh, SAMSON will classify each point as an

interior point, an exterior point, or a surface point. If a point was found to be on the

surface, SAMSON will store the array index of the geometry surface triangle the point is

on. This information is saved to apply boundary conditions more efficiently.

Each rectangular prism can then be divided into five or six tetrahedra16. This is shown

in Figure 5.6 and Figure 5.7. For each of these possible divisions, the positive volume

elements (consistently ordered) are given in Table 5.1 and Table 5.2. Note that the

numbering indices begin with zero as this convention is used in most computer science

applications.

53

1

2

3

4

5

6

7

0

Figure 5.6: Division of a rectangular prism into five tetrahedra

Table 5.1: Five positive volume tetrahedra

Element Nodes

0 0 1 2 4

1 1 3 7 2

2 4 5 1 7

3 2 7 6 4

4 1 2 4 7

54

0

1

2

3

4

5

6

7

3

4

0

7

Figure 5.7: Division of a rectangular prism into six tetrahedra

Table 5.2: Six positive volume tetrahedra

Element Nodes

0 0 1 3 7

1 0 1 7 4

2 1 7 4 5

3 2 0 3 6

4 6 0 7 4

5 0 7 3 6

55

SAMSON divides each rectangular prism into six tetrahedra due to advantages in

orientation. When the rectangular prism is divided into six tetrahedra, the orientation of

the triangles on opposite faces is the same. When the rectangular prism is divided into

five tetrahedra, the orientation of the triangles on opposite faces is mirrored. For example,

in Figure 5.7, both the front and back faces are divided from bottom-left to top-right. In

Figure 5.6, the front face is divided from bottom-left to top right whereas the back face is

divided from bottom-right to top-left. Therefore, when subdividing the rectangular prisms

into five tetrahedra, every division must be oriented 90 degrees from the divisions of the

neighboring rectangular prisms. This is shown in Figure 5.8 where differing color depicts

orientation.

(i, j, k)

(i + 1, j, k)

(i + 1, j + 1, k)

(i + 1, j + 1, k + 1)

(i + 1, j, k + 1)

(i, j, k + 1)

i

j

k

Figure 5.8: Repeating orientation of five tetrahedra rectangular prisms

56

If the rectangular prisms are numbered using the indices i, j, and k as shown in Figure

5.8, alternating the orientation simplifies to the following technique in basic pseudocode.

��� � ����� � ���
��
��� ��� � ����� � ���
��� ��
������ ��� � ����� 	 ���
������ ���
��������� �� � ����
���
�	����������� ���������	
	����� ��
��������� ���� � � ���������	
	����� ��
��������
�����
��

However, this is not necessary when dividing each of the rectangular prisms into six

tetrahedra. The same orientation can be repeated as shown in Figure 5.9.

Figure 5.9: Repeating orientation of six tetrahedra rectangular prisms

57

For shapes which themselves are rectangular prisms (e.g. beams, plates, etc.), this

meshing routine will completely discretize the geometry without requiring any further

mesh refinement. For irregular shapes, the mesh must be modified to conform to the

irregular geometry. Any element that contains at least one node inside the volume is kept.

Any element in which all four nodes are outside of the object is discarded. Any node that

is no longer used in an element is discarded. All remaining nodes outside the geometry

are connected to at least one node inside the object or on the object surface. The

remaining exterior nodes are collapsed to the surface of the geometry. Finally, the

meshing routine will calculate the centroid of the elements in which all four nodes lie on

the surface. These elements are most commonly found in corners or in shapes with

drastically convex or concave surfaces. If the centroid of the element is found to be

outside the geometry (using the same technique presented previously in this section), that

element is deleted. Figure 5.10 shows some meshes generated by the ordered meshing

routine. The complete processes for generating an ordered mesh is summarized in Figure

5.11.

Figure 5.10: Three geometries meshed with the ordered meshing routine

58

Figure 5.11: Ordered meshing process map

59

5.3 2D Delaunay triangulation

The random meshing algorithm is more complicated than the ordered meshing

algorithm and requires a 3D Delaunay tetrahedralization of randomly generated points.

Once a set of random points have been generated, these points can be used in a 3D

Delaunay tetrahedralization. However, this process is not immediately intuitive.

Therefore, a simplified 2D Delaunay triangulation will first be presented, and then this

process will be generalized to 3D31. Additionally, the 2D Delaunay triangulations

algorithms presented here can be used in the development of any 2D FEM engineering

tools.

The Delaunay triangulation was first presented in 1934 by Boris Delaunay, a Soviet

mathematician at the USSR Academy of Sciences and a premier Soviet mountain climber

of his day32. In mathematics and computational geometry, a Delaunay triangulation for a

set of n points in a plane is the triangulation such that no point is inside the circumcircle

of any triangle in the triangulation31. Each triangle is often referred to as a simplex (pl.

simplices) of the triangulation31. Delaunay triangulations maximize the smallest angle of

each simplex in the triangulation, minimizing the presence of simplices with poor aspect

ratio (i.e. long, skinny triangles)31. For example, the Delaunay triangulation of 11 points

with each simplex’s corresponding circumcircle is shown in Figure 5.12.

60

Figure 5.12: Delaunay triangulation with circumcircles shown

For a set of collinear points, no Delaunay triangulation exists. (The notion of

triangulation is degenerate for this case.) For four or more points on the same circle, such

as the vertices of a rectangle, the Delaunay triangulation is not unique. In the case of the

vertices of a rectangle, two possible triangulations that split the quadrangle into two

triangles satisfy the Delaunay condition. By considering circumscribed spheres, or

circumspheres, the notion of Delaunay triangulation extends to three dimensions17.

Higher dimensional generalizations are possible, but in these cases, a Delaunay

triangulation is not guaranteed to exist or be unique17. There are many algorithms for

finding the 2D Delaunay triangulation of a set of coplanar points, including incremental

methods (simplest), divide and conquer methods, advancing front methods, and sweeping

hull methods. Two incremental methods for finding the 2D Delaunay triangulation of a

61

set of points in the (x, y) plane will be presented. SAMSON uses a similar incremental

method for creating a 3D Delaunay tetrahedralization in the (x, y, z) domain.

5.3.1 Incremental 2D Delaunay triangulation by building the convex hull

In general, finding the Delaunay triangulation of a set of points in d-dimensional

Euclidean space can be converted to the problem of finding the convex hull of a set of

points in (d + 1)-dimensional space34. Each point is given an additional coordinate equal

to the point’s magnitude; the convex hull is found; and the bottom side of the convex hull

is mapped back to d-dimensional space33. As the convex hull is unique, so is the

triangulation, assuming all facets of the convex hull are simplices in the Delaunay

triangulation34. Nonsimplicial facets only occur when d + 2 of the original points lie on

the same d-hypersphere (i.e. 4+ points are co-circular or 5+ points are co-spherical)34.

Therefore, finding the 2D Delaunay triangulation of points on the (x, y) plane can be

converted into the problem of finding the convex hull of a set of points in 3D. The

convex hull for a set of points in a real vector space is the minimal convex set completely

containing all the points34. For example, given a finite set of coplanar points, the convex

hull is analogous to stretching a rubber band so that it surrounds the entire set and then

releasing it. For example, the convex hull of a set of points in 2D is shown in Figure 5.13.

Figure 5.13: Convex hull in 2D

62

Note that Figure 5.13 is purely for illustration purposes. A 2D convex hull is not used

for building a 2D triangulation. Building a 2D Delaunay triangulation requires building a

convex hull in 3D. Similar to the rubber band metaphor, the convex hull of a set of points

in 3D would be analogous to completely enclosing all the points in shrink wrap and

shrinking the envelope around the points. There are various methods for calculating the

convex hull of a set of points in 3D. Here, an incremental method will be presented.

In general, given a preexisting convex hull, the incremental algorithm provides a

method to add an additional point to the convex hull. Given a point set P and given the

convex hull of a subset of points in P, the convex hull for the entire point set can be

found by adding each remaining point into the convex hull. Once the convex hull

contains the entire set, the convex hull for all of P has been found.

For example, a simplified example will be presented in 2D (once again, purely for

demonstration purposes). In the incremental method, the algorithm starts with a convex

hull of a set of points. Then, an additional point is added to the point set, and the convex

hull may be modified to include that point. If the point lies outside the pre-existing

convex hull, the hull will be modified. If the point lies inside the pre-existing convex hull,

the hull requires no modification. For example, if a point is added to the 2D convex hull

given in Figure 5.13, the convex hull may or may not require modification as shown in

Figure 5.14.

63

Point added inside
convex hull

Point added outside
convex hull

Figure 5.14: Adding a point to a 2D convex hull

In 2D, building a convex hull is summarized in Figure 5.15. Consider a point set of

six points as shown in Figure 5.15. In this figure, there is an initial convex hull of three

points, referred to as the kernel. From this kernel, additional points are added, and the

convex hull is modified to accept each new point. After all the points have been added

into the convex hull, the result is the convex hull for the entire point set. However, to

begin the incremental process, the kernel needs to be established34.

1

2 3

Figure 5.15: Incremental method for finding convex hull from kernel

64

To find the 2D triangulation, the process illustrated in Figure 5.15 must be

generalized to 3D. The 2D Delaunay triangulation requires building the convex hull in

3D. Calculating a convex hull in 3D also requires a kernel. However, in 3D, the convex

hull will contain a volume instead of an area. The convex hull kernel can then be any

tetrahedron with a non-zero volume (as defined in Equation 3.9). In creating a 2D

Delaunay triangulation using the incremental convex hull method, the following steps are

required. Each step will be discussed in turn.

1. Lift points : “lift” 2D points into 3D by adding third coordinate (Section 5.3.1.1)

2. Create kernel: create the kernel tetrahedral that will be used to begin the convex

hull (Section 5.3.1.2)

3. Build the convex hull: incrementally build the convex hull of the resulting

paraboloid (Section 5.3.1.3)

4. Discard upper hull: remove the upper portion of the convex hull

(Section 5.3.1.4)

5. Re-map the convex hull: “collapse” the remaining 3D convex hull back onto the

appropriate 2D plane (Section 5.3.1.5)

5.3.1.1 Lift points

For a set of points in the (x, y) plane, each point must first be “lifted” into three

dimensions in the following manner. For each point, Pi = (xi, yi), in the point set, the

point is lifted into a third dimension, Pi = (xi, yi, xi
2 + yi

2). The result is a point set in

which every point lies on the paraboloid z = x2 + y2 in three dimesions34. For example,

consider the 200 randomly generated points on the (x, y) plane shown in Figure 5.16. The

center of the plane is the origin. These points are all lifted to 3D as shown in Figure 5.17.

65

Figure 5.16: 200 random points in the (x, y) plane

Figure 5.17: 200 random points lifted into 3D

66

5.3.1.2 Create kernel

The convex hull kernel can then be any tetrahedron with a non-zero volume as

defined in Equation 3.9. This can be achieved by selecting any four non-coplanar points

in the lifted point set. These points become vertices in the kernel convex hull, and each

face of the convex hull has the potential to become a simplex in the final 2D

triangulation.

5.3.1.3 Build the convex hull

Finding the convex hull in 3D is the same as the process presented for finding the

convex hull in 2D. Starting from the kernel tetrahedron, a new point is added to the

convex hull. If that point is outside the enclosed volume of the current convex hull, the

convex hull must be modified to include the new point. It is important to note that the

ordering of the points associated with each face of the convex hull is crucial. The

ordering scheme must be consistent throughout the incremental process. When viewed

from outside the convex hull, the points associated with all faces could be ordered

counterclockwise or clockwise. Consider the tetrahedral kernel formed from the four

points P1, P2, P3, and P4 as shown in Figure 5.18. A new point, P5, will be added to the

convex hull kernel.

67

z

x

y

1

2

3

4

5

z

x

y

1

2

3

4

5

Figure 5.18: Adding one point to a tetrahedral kernel

Let all the faces in the convex hull ordered in a counterclockwise fashion when

viewed from outside of the convex hull. Then the faces of the convex hull kernel should

be stored as:

· F1 = { P1, P2, P4 }

· F2 = { P4, P2, P3 }

· F3 = { P1, P4, P3 }

· F4 = { P1, P3, P2 }

Then, to test if any new point is outside the kernel, the volume of the tetrahedron formed

from each face and the new point can be calculated using Equation 3.9. If one of these

volumes is positive, then the new point is outside the current convex hull. For example,

the new point, P5, is added to the convex hull is Figure 5.18. The volume of four

tetrahedra is calculated, one from each face in the kernel convex hull:

· V1 is found from { P1, P2, P4, P5 }

· V2 is found from { P4, P2, P3, P5 }

68

· V3 is found from { P1, P4, P3, P5 }

· V4 is found from { P1, P3, P2, P5 }

Here, point ordering is important. Of these volumes, V2 is positive meaning that the

new point is outside of the convex hull. Only if all volumes are negative will the point lie

inside the convex hull. Because V2 is positive, F2 is deleted, and three new faces are

added using the three edges from F2 and the new point. The new convex hull now has six

faces which are stored as:

· F1 = { P1, P2, P4 }

· F2 = { P1, P4, P3 }

· F3 = { P1, P3, P2 }

· F4 = { P4, P2, P5 }

· F5 = { P4, P5, P3 }

· F6 = { P2, P3, P5 }

This same process is repeated for each new point added to the convex hull. If multiple

faces have positive volumes corresponding to the new point, all these faces are deleted

along with any edges shared between these faces. Then, new faces are formed using the

remaining edges from the deleted faces. Adding each new point would appears as follows

in simple pseudocode.

69

��� �����!��� �"� �����#�
�������$�������!����"� �����������%��&������������� �����������������������
�������������"� �����#�����$�������!����"� �������� ���%������&������������
����������������������������������"� ������%������� �����!��������%�����$��#�
�����������$$�'(���!�����$$�'(����������$$�'�
��	
���	 � ���)������ ���*���� ��
��
��� ��� � ����������� �
��� ��
������ ������������"���&��%'���	��!���������$&�������$�&�+ ,�������-#.�
��������������$����$���"���&��/��������"�$��������� � ���*���� ���
�������
������ ��� �"���&��0����
������ ��
������������$��������$�����!������������������ ��!�� �
���������$�&�"��������$�&� ����� �
��������
�����
�
���$�&�"���������������$�����$�&� ��!�� �
�
��� ��� � �������!����
�����
����������$��$��!������"�$'��$�&������������� �
���������&�	����$���$��$��!������$$���111 �
������ ������� ������ � �	� � �����/���������!��"�$���������� ���*���� ���
�����
��

If this function is used to add one point to the convex hull, then forming the convex

hull for many points would be accomplished by calling this function for every point in

the point set. In pseudocode, building the convex hull would appear as follows.

�����������������������$������������"� ������������ ������������-2#�
�����������$$�'(����������$$�'�
��	
���	 � %����)���"�)����� ������ ��
��
��� ����$����������$$�'���������(�����������������'���� �	�$��� �
��� ����� ����$�����	�$�����$�&���'����$���������
�
��� ��� � ������������������������	�$�����
�����
������ ��� � �
���������)������������� � ���
�����
�
��� ���$���$���������"� ����� �
��� �����	� ����� �
��

70

In building the 2D Delaunay triangulation, the convex hull is formed from points

lifted from 2D onto a 3D paraboloid. Because all the points lie on the paraboloid

z = x2 + y2, every point is guaranteed to lie on the surface of the convex hull33.

5.3.1.4 Discard upper hull

Once the convex hull has been constructed, only the lower portion of the hull

represents the Delaunay triangulation. Therefore, any face of the convex hull that has a

normal vector with a positive z-component (the upper hull) is deleted. The remaining so-

called lower hull can then be re-mapped to the (x, y) plane to obtain the final Delaunay

triangulation. The lower convex hull for the points shown in Figure 5.17 is given in

Figure 5.19.

Figure 5.19: Lower convex hull of 200 random points

71

5.3.1.5 Re-map the convex hull

The lower convex hull can then be “collapsed” back onto the appropriate plane. In

most cases, this is simply the (x, y) plane. The re-mapping process is extremely simple in

that the z-coordinate of each point is deleted (or set to zero)33. Each of the remaining

faces from the lower hull then becomes a simplex in the triangulation. For example, the

Delaunay triangulation for the 200 points shown in Figure 5.16 is shown in Figure 5.20.

This was obtained by collapsing the convex hull shown in Figure 5.19 back to the (x, y)

plane.

Figure 5.20: Delaunay triangulation for 200 random points

72

Using the two pseudocode functions ���)����� and %����)���"�)���� described

previously, the entire formation of the 2D Delaunay triangulation can be described by the

following pseudocode.

��������������������������������2�2������'��$���!�� ��������������������������
����������� (�'�������#��
������������$$�'(��$���!����������$$�'�
��	
���	 � �2)2������'� ������ ��
��
��� ��� � ������������ �
��� ��
��������������������������$�&��2������-2�
������������� � ��� 	� � ������ � (�' � (� �

� �
�' �
� ��

�����
�
��� ��%���������� ���"� ����� �
��� �$���!������� ��%����)���"�)����� ������ ��
�
��� ��� � ������$���!������� �$���!������� � �
��� ��
������ �������������������$&������������$���!���%'���	��!� ���$�����$������
���������������$���!�����!��(��$��$��!�����$���!��� ����&��$����111 �
������������������$&�������$���!�������� � ��
�
������ ��� ���$&���34��&�������0����
������ ��
���������$�&�"���$���!����$�&� �$���!������� �
��������
�����
�
��� ��� � ������������ �
��� ��
������������������������������$�&�-2�%��	�����2�
������������� � ��� 	� � ������ � (�' � ��
�����
�
��� ���$���$������2������'��$���!��������
��� �����	� �$���!������� �
��

Although very complex, this method represents one of the simplest methods for

producing a 2D Delaunay triangulation. This method can be generalized into

d-dimensional space. For example, finding a 3D Delaunay tetrahedralization would

require finding the convex hull of a point set in 4D where each point is defined as

Pi = (xi, yi, zi, xi
2 + yi

2 + zi
2).

73

5.3.2 Incremental 2D Delaunay triangulation using a super-triangulation

Another incremental method for forming a 2D Delaunay triangulation does not

include forming the convex hull. Instead, a “super-triangulation” is constructed that

surrounds every point, and new points are added to the super-triangulation incrementally.

In essence, the same mathematical tests are used as when forming the convex hull of

lifted points. However, the conceptual derivations behind the two methods differ, and

different post-processing is required. In creating a 2D Delaunay triangulation using the

incremental super-triangulation method, the following steps are required. Each step will

be discussed in turn.

1. Construct super-triangulation: construct a triangle that complete surrounds all

the points in the point set (Section 5.3.2.1)

2. Incrementally build triangulation: add each point to the triangulation,

rebuilding the triangulation after each additional point (Section 5.3.2.2)

3. Remove super-triangulation: remove any simplex in the triangulation that

contains one of the points from the super-triangulation (Section 5.3.2.3)

5.3.2.1 Construct super-triangulation

For a set of random points in the (x, y) plane, a super-triangulation can be any

triangulation that completely contains all the points in the point set35. For example,

Figure 5.21(a) shows a point set containing seven randomly placed points. Figure 5.21(b)

and Figure 5.21(c) both represent valid super-triangulations for the set of points. All the

points in the point set must be inside the circumcircle of one of the simplices in the super-

triangulation35.

74

(a) (b) (c)

Figure 5.21: Super-triangulations for 7 random points

5.3.2.2 Incrementally build triangulation

Much like the incremental convex hull method, the super-triangulation method relies

on adding one additional vertex to an existing triangulation (instead of adding one point

to an existing hull) for each point not included in the triangulation. The process for

adding a point is given in the following psuedocode35. This should look similar to the

process for building the convex hull.

�� �� ���!��$���!�������#�
��������$���!�������������%��&����������$��"�$'���� ������#�
������������$$�'(��$���!����������$$�'(���!����� $$�'�
��	
���	 � ���)������ ���*���� ��
��
��� ��� � ������$���!������� �$���!������� � �
��� ��
������ ��� � ���*���� ����������������$���!�����$��&��$�����
������ ��
������������$��������$�����!�����������$���!������ ��!�� �
���������$�&�"���$���!����$�&� �$���!������� �
��������
�����
�
���$�&�"���������������$�����$�&� ��!�� �
�
��� ��� � �������!����
�����
����������$��$��!������"�$'��$�&������������� �
���������&�	����$���$��$��!������$$���111 �
������ ������� �$���!������� �� �	� � �$���!���/��
��������������������������������������!��"�$������� ��� ���*���� ���
�����
��

75

Conceptually, this process is pictured in Figure 5.22.

To add a point into an existing
Delaunay triangulation…

Step 1:
Find which simplices have a
circumcircle encompassing the new
point.

Step 2:
Delete these simplices from the
triangulation, storing the three edges
from each simplex. Delete duplicate
edges from the stored edges.

Step 3:
Create new simplices from the
remaining stored edges and the new
point.

Step 4:
Add the new simplices to the
triangulation.

Figure 5.22: Adding a point to an existing triangulation

76

It is important to note that each new point is tested against every circumcircle in the

triangulation. It requires some formulation to see if the new point is inside the

circumcircle formed from three simplex vertices. The equation of a circumcircle formed

from three points, P1, P2, and P3, is given in Equation 5.236. Subscripts refer back to the

point numbering.

� �

/
0
0
0
1
� � � ' � � �

� � ' �
�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

�

� � ' � � � ' � 2
3
3
3
4
 (5.2)

This determinate can also be used to can also be used to check a fourth point’s

location with respect to the circumcircle formed from three points36. To test the

relationship between P4 and the circumcircle formed by P1, P2, and P3, there are three

possible cases.

/
0
0
0
1
� � � ' � � �

� � ' �
�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

� 2
3
3
3
4

j �
Case 1:
P4 is inside the circumcircle
formed by P1, P2, and P3.

(5.3)

/
0
0
0
1
� � � ' � � �

� � ' �
�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

� 2
3
3
3
4

k �
Case 2:
P4 is outside the circumcircle
formed by P1, P2, and P3.

(5.4)

/
0
0
0
1
� � � ' � � �

� � ' �
�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

�

� � � ' � � �
� � ' �

� 2
3
3
3
4

� �
Case 3:
P4 is on the circumcircle formed
by P1, P2, and P3.

(5.5)

As in forming the 3D convex hull, the ordering of P1, P2, and P3 is important. The

previous cases assume that the triangle vertices are ordered counterclockwise when

77

viewed in a right-handed (x, y) coordinate system. Notice that this determinate is exactly

the same as calculating the tetrahedral volume of four points lifted from the (x, y) plane to

the paraboloid z = x2 + y2. This determinate can be calculated quite efficiently. The

calculation of this determinate is given in the following pseudocode. The following

pseudocode function could be used for both finding the tetrahedral volumes using the

incremental convex hull method or testing relation to a circumcircle in the incremental

super-triangulation method.

���������������������������������������2����������� ������$��&��$������$&���
���%'��������5(�6(�����7#�
����������������������������%���������������������� $����$���"���&��������$�
������������������$�&������ (�'�������������������$ �%������3�� � �
�' � #�
��	
���	 � ������)��$��&��$���������� 5(������� 6(������� 7(������� 2��
��
���65 ��6� ��8�5� ��
���65'��6�'��8�5�'��
���653���6� �96� ��
�6�'�96�'���4��5� �95� ��
�5�' �95�'���
�
���75 ��7� ��4�5� ��
���75'��7�'��4�5�'��
���753���7� �97� ��
�7�'�97�'���4��5� �95� ��
�5�' �95�'���
�
���25 ��2� ��4�5� ��
���25'��2�'��4�5�'��
���253���2� �92� ��
�2�'�92�'���4��5� �95� ��
�5�' �95�'���
�
��� ���������������������$&����������,��������:#-(�:#;(�:#:�
��������4<�9�����25 �9��65'�9�753�4�653�9�75'��
��
������������������25'�9��653�9�75 �4�65 �9�753��
��
������������������253�9��65 �9�75'�4�65'�9�75 ����� �
����
��� ���$���$����$���������������������������$���������� $��&��$����
��� ��� �����=���� �����	� �$���
��� ���$���$���������������������������������������$��& ��$����
�������������	� ����� �
��

Once every point has been added into the triangulation, the complete Delaunay

triangulation has been found, but the additional points from the super-triangulation are

still included. These points were not in the original point set and need to be removed. For

example, Figure 5.23(a) shows the super-triangulation formed around seven random

78

points, and Figure 5.23(b) shows the resulting triangulation upon adding all seven points.

The resulting triangulation still includes three extra points generated for the super-

triangulation.

(a) (b)

Figure 5.23: Delaunay triangulation of 7 random points with super-triangulation

5.3.2.3 Remove super-triangulation

The final step in building the 2D Delaunay triangulation for the point set is removing

any simplex that contains a vertex generated for the super-triangulation35. For the

triangulation shown in Figure 5.24(a), the resulting final Delaunay triangulation is shown

in Figure 5.24(b).

(a) (b)

Figure 5.24: Removal of the super-triangulation

The entire 2D Delaunay process using a super-triangulation is visually summarized by

the following Figure 5.25 through Figure 5.28 sequentially.

79

Figure 5.25: 1000 random points

Figure 5.26: Super-triangulation of 1000 random points

80

Figure 5.27: Delaunay triangulation of random and super-triangulation points

Figure 5.28: Final Delaunay triangulation of 1000 random points

81

Using the two pseudocode functions ���)����� and ������)��$��&��$��� described

previously, the entire formation of the 2D Delaunay triangulation can be described by the

following pseudocode.

��������������������������������2�2������'��$���!�� ��������������������������
����������� (�'�������#��
������������$$�'(��$���!����������$$�'�
��	
���	 � �2)2������'� ������ ��
��
������%�������������$4�$���!�����������������&����� ������������ �
��� �$���!������� ��%���������$4�$���!��������
�
��� ��� � ������������ �
��� ��
���������������������������������� �����!��$���!��� �����
���������)������������� � ���
�����

�
��� ��� � ������$���!������� �$���!������� � �
��� ��
������ ���$�&�"�������$���!�������������������"�$�� ��$�&� �����
�������������$4�$���!���������>����$4"�$�� ?� �
������ ��� ������$�&�$��"�$���������������$4"�$�� ��
������ ��
���������$�&�"���$���!����$�&� �$���!������� �
��������
�����
����
���$�&�"������$4"�$�������$�&�����������
�
��� ���$���$��2������'��$���!���������
��� �����	� �$���!������� �
��

This method represents one of the simplest methods for producing a 2D Delaunay

triangulation. As compared to building the 2D Delaunay triangulation using the

incremental convex hull method, the incremental super-triangulation method ends up

being almost numerically identical. Both methods use the same mathematical tests when

building the triangulation, and as a result, both are equally efficient. The only difference

is that the incremental convex hull method must remove the upper hull whereas the

incremental super-triangulation method must remove the simplices containing the super-

triangulation points. The author prefers the super-triangulation method as it is more

82

immediately intuitive. SAMSON uses a 3D generalization of the incremental super-

triangulation methods only using tetrahedra and spheres instead of triangles and circles.

Compared to divide and conquer or sweeping hull methods, the two incremental methods

presented are much less efficient. However, these methods were beyond the scope of this

thesis.

5.4 Random mesh generation

In addition to the ordered meshing algorithm, the user also has the option to generate

a mesh using the random meshing algorithm. The random meshing algorithm requires a

3D Delaunay tetrahedralization of randomly generated points. In general, the random

mesh algorithm is more suited for irregular geometries. The random mesh generation

algorithm can be divided into 6 major processes. Each of these processes will be

discussed in turn.

1. Analyze the geometry: find geometry extrema, build bounding box, and

discretize bounding box into “cells” (Section 5.4.1)

2. Generating random nodes: generate random nodes inside of each “cell,”

force some nodes to the object surface, include vertices from original

geometry definition to capture surface information (Section 5.4.2)

3. Sort nodes: sort the nodes in the characteristic direction based on the lengths

of the bounding box edges (Section 5.4.3)

4. Build super-tetrahedralization: Construct a large tetrahedralization that

completely encloses the bounding box (Section 5.4.4)

5. 3D Delaunay tetrahedralization: perform Delaunay technique to obtain

nodal connectivity (Section 5.4.5)

83

6. Remove super-tetrahedralization: Discard any nodes and elements

corresponding to the super-tetrahedralization (Section 5.4.6)

5.4.1 Analyze the geometry

The geometry is analyzed in the same manner as in the ordered meshing algorithm.

The routine will cycle through all the geometry vertices and determine the six extreme

values: the minimum x, y, and z-coordinates and the maximum x, y, and z-coordinates.

From this, the routine will construct the bounding box completely containing the object

geometry. This entire bounding box will then be discretized into smaller rectangular

prisms, or cells, as shown Figure 5.4. The discretization of the bounding box will have

varying levels of grid density depending on the mesh refinement input from the user. The

mesh refinement will dictate the number of cells that will lie along the shortest length of

the bounding box. However, the corners of each cell will not become nodal points.

Instead, the corners of each cell will be used to set the boundaries for generating random

nodes.

5.4.2 Generate random nodes

After analyzing the input geometry, the similarities between the random mesh

algorithm and the ordered mesh algorithm end. The geometry has been discretized into

cells with known boundaries. The random meshing algorithm will then generate from 4 to

6 nodes inside each cell. After every nodal point is generated, it is compared to the nodal

points generated in neighboring cells. Each node must be a minimum distance from all

other generated nodes that depends on the geometry size and the mesh refinement.

Random nodes are generated inside a discrete number of cells instead of just generating

random nodes throughout the entire bounding box. This is done to force some degree of

84

uniformity in node density throughout geometry as neighboring elements should have

comparable sizes to ensure more accurate results. All elements are consistent in size. At

this time, there has been no effort to force element concentration at potential high stress

areas. Similarly, when checking the distance between nodes to ensure the minimum

separation, each node is only compared to other nodes in the same cell and to nodes in

neighboring cells. This increases the efficiency of the node generating algorithm.

Using the same process as in the ordered meshing algorithm, SAMSON will classify

each point as an interior point, an exterior point, or a surface point. Exterior points are

discarded. In order to ensure that the surface geometry is captured, any node within a

specified distance of the surface is then forced to the geometry surface. If a node is

classified as a surface point, SAMSON will store the array index of the geometry surface

triangle the point is on. This information is saved to apply boundary conditions more

efficiently. Finally all the geometry vertices are included as nodal points to ensure that

the surface information is captured.

For example, SAMSON was used to generate random points inside a cube. The points

generated for different mesh refinements are shown in Figure 5.29. The blue points

represent surface points. The green points represent interior points. Note that for a cube, a

mesh refinement of 1 will generate 1 cell; a mesh refinement of 2 will generate 8 cells; a

mesh refinement of 3 will generate 27 cells; and a mesh refinement of 4 will generate 64

cells.

85

Figure 5.29: Surface (blue) and interior (green) nodes generated randomly

5.4.3 Sort nodes

As discussed in Chapter 3: The Finite Element Method Implementation, the band

width of the global stiffness matrix depends on the maximum difference in numbering

between nodes in the same element, � ^ � Q � _`! . In order to minimize the band width of

the global stiffness matrix, the points are sorted in the direction of the characteristic

86

length based on the lengths of the bounding box edges. The points are sorted by the

longest length direction of the bounding box. This was completed using a modified

version of the in-place quicksort algorithm37. This algorithm requires two functions, the

,���	��$� function and the� ��$������ function. The partition function is given in

pseudocode as follows.

���������������$�����!���$��$$�'(������������� (�' (�3��
������������������� ������������&�������&���������� ���%�$$�' �
���$�!�������������� ��������$�!��&�������&�������� �����%�$$�'���������"���
�����&%�$�������&����������%�$$�'��$�!���8������
� <�
��	
���	 � ��$�������������(� ���� (� $�!�� (� ��"��@��� (���& ��
��
���A���	��$����4��������������������$�&������������ ��������/�
�������/����#��	������#�$!���	��A���	��$�BC�&���)"� $�����
�
��� ��"��D���� �/�������� ��"��@��� �� ��& ��
�
��������������� ��"��@��� ������������� $�!�� ������E�"����"����������
��� ���$�@��� � /� �����
�
��� ��� � � � ��$�&� ����� ��� $�!��� 8� <��� ��������F���=�$�!���
��� ��
����������������� � �� ��& ��=� ��"��D���� ��
��������
����������������������� � ������������� ���$�@��� ��
����������� ���$�@��� � /� ���$�@��� �
�<�
��������
�����
������E�"����"��������������������� �
��������������� ���$�@��� ������������� $�!�� ��
���
��� �����	 � ���$�@��� �
��

The in-place sorting function ��$������ divides the portion of the array between

indices ���� and $�!�� , inclusively. Depending on the sorting dimension, this function

moves all points with a ������������&� less than ���������"��@��� ����&� before the

pivot index, all points with a ������������&� greater than ���������"��@��� ����&� after

the pivot index. In the process it also finds the final position for the pivot element, which

87

it returns. The sorting function then calls the partition function recursively to sort the

points. The quicksort function is given in pseudocode as follows.

���������������$�����!���$��$$�'(������������� (�' (�3��
������������������� ������������&�������&���������� ��$$�' �
���$�!�������������� ��������$�!��&�������&�������� ����$$�'���������"���
�����&���$$��������������������!������%���!���$���(� (�'(��$�3�
��	
���	 � ,���	��$��������(� ���� (� $�!�� (���& ��
��
���A���	��$����4��������������������$�&������������ ��������/�
�������/����#��	������#�$!���	��A���	��$�BC�&���)"� $�����
�
��� ���������$���$�����$�&�$�������� �
��� �� � � ����� =� $�!�� ��
�����
������ �����"������� ���������������%������&�������������� ����$�!�� �
������ ��"��@��� � /�����$� �����
�� $�!��� 8� �����
� <���� � ��
��
������ ���G������������%�!!�$������&����$����&������������ ��������������"�� �
������ ��"��H��@��� � /���$�������������(� ���� (� $�!�� (� ��"��@��� (���& ��
��
������ ���I���$��"��'���$�����&������&����$������������"�� �
������,���	��$��������(� ���� (� ��"��H��@��� � 4� <(���& ��
� �
������ ���I���$��"��'���$�����&�����������������%�!������� ���"�� �
������,���	��$��������(� ��"��H��@��� �
� <(� $�!�� (���& ��
�����
��

Each recursive call to this ,���	��$� function reduces the size of the array being sorted by

at least one element, since in each invocation the element at ��"��H��@��� � is placed in its

final position. Therefore, this algorithm is guaranteed to terminate after at

most n recursive calls37.

Once the random points have been generated and sorted, the Delaunay

tetrahedralization can be found for this point set. Recall that a Delaunay triangulation for

a set of n points in 2D is the triangulation such that no point is inside the circumcircle of

any triangle in the triangulation31. Similarly, a Delaunay tetrahedralization for a set of n

points in 3D is a tetrahedralization such that no point is inside the circumsphere of any

tetrahedral in the tetrahedralization33. However, unlike the Delaunay triangulation, the

88

Delaunay tetrahedralization may not be unique or minimize the presence of elements with

bad aspect ratios29.

5.4.4 Build super-tetrahedralization

SAMSON builds the Delaunay tetrahedralization by generalizing the 2D incremental

super-triangulation method into 3D. For a set of random points in the (x, y, z) domain, a

super-tetrahedralization can be any tetrahedralization that completely contains all the

points in the point set17. For example, Figure 5.30(a) and Figure 5.30(b) both show valid

super-tetrahedralizations for a set of seven random points. All the points in the point set

must be inside the circumsphere of one of the simplices in the super-tetrahedralization35.

(a) (b)

Figure 5.30: Super-tetrahedralizations for 7 random points

SAMSON builds a super-tetrahedralization in the form of a rectangular prism divided

into five tetrahedra like that shown in Figure 5.30(b). This should not be confused with

the ordered meshing routine which discretizes the entire volume into rectangular prism

89

divided into six tetrahedra. The super-tetrahedralization could use five or six tetrahedra.

The number of tetrahedra in the super-tetrahedralization is unimportant, and five was

arbitrarily chosen. To accomplish this, the bounding box found during the random point

generation is used. A new rectangular prism is created whose side lengths are each 140%

of the corresponding bounding box lengths and shares a centroid with the bounding box.

This is done to ensure all points lie inside the super-tetrahedralization. For example,

Figure 5.31 shows the super-tetrahedralization generated for a cube containing 190

randomly generated points.

Figure 5.31: Super-tetrahedralization for cube geometry

5.4.5 3D Delaunay tetrahedralization

The goal of the 3D Delaunay tetrahedralization algorithm is to take the set of n

random points given by P1, P2, … , Pi, … , Pn and generate a list of r tetrahedral elements

given by E1, E2, … , Ei, … , Er. Here, each tetrahedral element is formed from four points

90

given by Ei = { Pj, Pk, Pl, Pm }. Much like the 2D incremental super-triangulation method,

the 3D incremental super-tetrahedralization method relies on adding one additional vertex

to an existing tetrahedralization for each point not included in the tetrahedralization. The

process for adding a point is given in the following psuedocode17. This should look

similar to the process in 2D. The major differences result from the generalization from

2D to 3D. Circumspheres are used instead of circumcircles, and instead of storing three

edges from any triangular simplex, four faces from any tetrahedral simplex are stored.

Once again, ordering is important to ensure that every element volume is positive as

calculated by Equation 3.9.

�� �� ���!����$����$���3�����#�
����������$����$���3�����������%��&����������$��"�$ '����������#�
������������$$�'(����$����$���3��������$$�'(����� ����$$�'�
��	
���	 � ���)������ ���*���� ��
��
��� ��� � ��������$����$����� ���$����$���3����� � �
��� ��
������ ��� � ���*���� ������������������$����$�����$��&����$���
������ ��
������������$���������$�����������������$����$����� � ����� �
���������$�&�"�����$����$����$�&� ���$����$���3������
�
�����������������2������'����$����$���3������&����� ��������$����'������%��#�
�������������������4�����&����	��	����������������� ��������������%�!�������
������������!$�����������%����(�������&�'���������� ������!���������$��$�����
��������������������$������������������$����$���3�� ���#�
��������� �� � ���&%�$����������0���&���� ����� +IIJI �
��������
�����
�
������H���������������&�������&�'��$��$��������$��� �'�������������$����
������%��������������$����$�#�2������������������%� �$�&�"����"���������'�
�������$���$��$��������$����'#�
���$�&�"���������������$�����$�&� ����� �
�
��� ��� � ������������
�����
����������$��$��!������"�$'��$�&����$����$��������� $����$�� �
���������&�	����$���$��$��!������$$���111 �
������ ������� ���$����$���3����� �� �	� � ���$����$��/��
����������������������������������$��������"�$����� ����� ���*���� ���
�����
��

91

It is important to note that each new point is tested against every circumsphere in the

tetrahedralization. (As three non-colinear points completely define a circle, four non-

coplanar points completely define a sphere.) It requires some formulation to see if a new

point is inside the circumsphere formed from four tetrahedral vertices. The equation of a

circumsphere formed from four points, P1, P2, P3, and P4, is given in Equation 5.638.

Subscripts refer back to the point numbering.

� �

/
0
0
0
0
1
� � � ' � (� � �

� � ' �
� � (�

�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � ' (� � � ' � � (� 2
3
3
3
3
4

 (5.6)

This determinate can also be used to can also be used to check a fifth point’s location

with respect to the circumsphere formed from four points38. To test the relationship

between P5 and the circumsphere formed by P1, P2, P3, and P4, there are three possible

cases.

92

/
0
0
0
0
1
� � � ' � (� � �

� � ' �
� � (�

�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � l ' l (l � l
� � ' l

� � (l
� 2
3
3
3
3
4

j �
Case 1:
P5 is inside the circumcircle
formed by P1, P2, P3, and P4.

(5.7)

/
0
0
0
0
1
� � � ' � (� � �

� � ' �
� � (�

�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � l ' l (l � l
� � ' l

� � (l
� 2
3
3
3
3
4

k �
Case 2:
P5 is outside the circumcircle
formed by P1, P2, P3, and P4.

(5.8)

/
0
0
0
0
1
� � � ' � (� � �

� � ' �
� � (�

�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � � ' � (� � �
� � ' �

� � (�
�

� � l ' l (l � l
� � ' l

� � (l
� 2
3
3
3
3
4

� �
Case 3:
P5 is on the circumcircle formed by
P1, P2, P3, and P4.

(5.9)

As in forming the 2D triangulation, the ordering of P1, P2, P3, and P4 is important.

The previous cases assume that the tetrahedral vertices are ordered such that the volume

of the tetrahedral formed from P1, P2, P3, and P4 is positive as calculated by Equation 3.9.

This determinate can be calculated quite efficiently. The calculation of this determinate is

given in the following pseudocode.

� �

93

���������������������������������������+����������� ������$��&����$����$&���
���%'��������5(�6(�7(�����2#�
��	
���	 � ������)��$��&����$�������� 5(������� 6(������� 7(������� 2(������� +��
��
���5+ ��5� ��4�+� ��
���5+'��5�'��4�+�'��
���5+3��5�3��4�+�3��
���6+ ��6� ��4�+� ��
���6+'��6�'��4�+�'��
���6+3��6�3��4�+�3��
���7+ ��7� ��4�+� ��
���7+'��7�'��4�+�'��
���7+3��7�3��4�+�3��
���2+ ��2� ��4�+� ��
���2+'��2�'��4�+�'��
���2+3��2�3��4�+�3��
� � � �
���5+ 6+'��5+ �9�6+'�
���6+ 5+'��6+ �9�5+'�
���56��5+ 6+'�4�6+ 5+'�
���6+ 7+'��6+ �9�7+'�
���7+ 6+'��7+ �9�6+'�
���67��6+ 7+'�4�7+ 6+'�
���7+ 2+'��7+ �9�2+'�
���2+ 7+'��2+ �9�7+'�
���72��7+ 2+'�4�2+ 7+'�
���2+ 5+'��2+ �9�5+'�
���5+ 2+'��5+ �9�2+'�
���25��2+ 5+'�4�5+ 2+'�
���5+ 7+'��5+ �9�7+'�
���7+ 5+'��7+ �9�5+'�
���57��5+ 7+'�4�7+ 5+'�
���6+ 2+'��6+ �9�2+'�
���2+ 6+'��2+ �9�6+'�
���62��6+ 2+'�4�2+ 6+'�
� � � �
���567��5+3�9�67�4�6+3�9�57�
�7+3�9�56�
���672��6+3�9�72�4�7+3�9�62�
�2+3�9�67�
���725��7+3�9�25�
�2+3�9�57�
�5+3�9�72�
���256��2+3�9�56�
�5+3�9�62�
�6+3�9�25�
� � � �
���5������5+ �9�5+ �
�5+'�9�5+'�
�5+3�9�5+3�
���6������6+ �9�6+ �
�6+'�9�6+'�
�6+3�9�6+3�
���7������7+ �9�7+ �
�7+'�9�7+'�
�7+3�9�7+3�
���2������2+ �9�2+ �
�2+'�9�2+'�
�2+3�9�2+3�
�
��� ���������������������$&����������,��������:#K(�:#L(�:#. � � �
���������2�����9�567�4�7�����9�256��
��6�����9�725 �4�5�����9�672��
�
��� ���$���$����$���������������������������$���������� $��&����$��
��� ��� �����=���� �����	� �$���
��� ���$���$���������������������������������������$��& ����$��
�������������	� ����� �
��

94

It is important to note that approximately 80 mathematical operations are required to

check a point’s relation to a sphere, and this check is performed many times when

building the tetrahedralization. This represents the greatest computational requirement for

calculating the Delaunay tetrahedralization. However, this technique is the most efficient

possible manner to calculate the determinate given in Equations 5.7, 5.8, and 5.9.

 Once every point has been added into the tetrahedralization, the complete Delaunay

tetrahedralization has been found, but the additional points from the super-

tetrahedralization are still included. These points were not in the original point set and

need to be removed. For example, Figure 5.32(a) shows the super- tetrahedralization

formed around 15 random points, and Figure 5.32(b) shows the resulting

tetrahedralization upon adding all 15 points into the super-tetrahedralization. The

resulting tetrahedralization still includes eight extra points generated for the super-

tetrahedralization.

Figure 5.32: Delaunay tetrahedralization with super-tetrahedralization

95

5.4.6 Remove super-tetrahedralization

The final step in building the 3D Delaunay tetrahedralization for the point set is

removing any element that contains a vertex generated from the super- tetrahedralization.

For the tetrahedralization shown in Figure 5.33(a), the resulting final Delaunay

tetrahedralization is shown in Figure 5.33(b).

Figure 5.33: Removal of the super-tetrahedralization

96

Using the two pseudocode functions ���)����� and ������)��$��&����$� described

previously, the entire formation of the 3D Delaunay tetrahedralization can be described

by the following pseudocode.

�������������������������������-2�2������'����$���� $���3�������������������
���������������� (�'(�3�����$�������#��
��	
���	 � -2)2������'� ������ ��
��
������%�������������$4���$����$���3���������������& ����������������� �
��� ���$����$���3����� ��%���������$4���$����$���3������
�
��� ��� � ������������ �
��� ��
���������������������������������� �����!����$����$ ���3������
���������)������������� � ���
�����

�
��� ��� � ��������&�������� ���$����$���3����� � �
��� ��
������ ���$�&�"���������&��������������������"�$�� ��$�&�� ����
�������������$4���$����$���3�������>����$4"�$�� ?� �
������ ��� ������$�&�$��"�$���������������$4"�$�� ��
������ ��
���������$�&�"�����&�����$�&� ���$����$���3����� �
��������
�����
����
���$�&�"������$4"�$�������$�&�����������
�
��� ���$���$��2������'����$����$���3������
��� �����	� ���$����$���3����� �
��

This method represents one of the simplest methods for producing a 3D Delaunay

tetrahedralization. However, it was found that this method for building a

tetrahedralization is inherently unstable may not produce a high-quality mesh. Future

development of SAMSON should look to improve the random mesh generation algorithm

by looking at octree methods or methods to optimize nodal locations after the

tetrahedralization has been built. However, the quality of mesh generated is acceptable in

most cases, especially for higher levels of mesh refinement.

97

To summarize, the random meshing routine will generate random points in the object

interior and on the object surface. These points must be a minimum distance from all

other generated points that depends on the geometry size and the mesh refinement. Using

the generated points, a 3D Delaunay tetrahedralization is created using an incremental

method17. Figure 5.34 shows two meshes generated by the random meshing routine. The

complete process for generating a random mesh is summarized in Figure 5.35.

Figure 5.34: Two geometries meshed with the random meshing routine

98

Figure 5.35: Random meshing process map

99

6 Cluster Implementation

SAMSON utilizes a 32 node, 382 cell cluster (Intel CPUs running under Windows

2008 HPC Server R2 system) at the University of Oklahoma dedicated to engineering

education. All simulations are internet-based, and are freely open to others to utilize at

their institutions. SAMSON employs the HPC cluster for two primary purposes.

1. Web/file hosting: web hosting of SAMSON so that it can be accessed over

the internet as well as storing essential files

2. Remote calculations: performs required calculations taking advantage of the

HPC cluster’s superior computing power

6.1 Web/file hosting

6.1.1 Web hosting

SAMSON’s most basic use of the remote HPC cluster takes advantage of the cluster’s

server operations. SAMSON uses the cluster’s web address (eCluster.ou.edu) to host the

tool, making it available to access over the internet. The HPC cluster is running under

HPC Windows Server 2008 R2 which comes with many available roles, including

Internet Information Services 7.5 (IIS). IIS is a full web server that allows website

hosting.

IIS 7 was a complete redesign of IIS from previous versions and was shipped with

Windows Vista and Windows Server 2008. IIS 7 introduced a new hierarchical

configuration system allowing for simpler site deploys, new command line management

options, and increased support for the .NET Framework39. The current shipping version

of IIS is IIS 7.5, included in Windows Server 2008 R2. IIS 7.5 improved FTP modules as

100

well as command line administration in PowerShell39. SAMSON has been implemented

in the existing site hosted by the HPC cluster allowing access to the tool from any

machine with an internet connection.

6.1.2 File hosting

SAMSON also uses the HPC cluster for basic file hosting, most notably, the pre-

created geometries in the geometry library and the compiled form of the tool itself. It was

desired to allow the user to perform simulations without creating a custom geometry.

This is useful for demonstration purposes as well as allowing access to the tool without

requiring any 3D modeling software. Therefore, a geometry library containing several

basic shapes was created, and access to this library was provided to the user. This allows

the user to become familiar with the tools without creating a custom geometry. All

geometries in the geometry library were created using the free version of Google

SketchUp and exported as COLLADA models26. These 3D models are stored on the

server hosting SAMSON.

When SAMSON is loaded into a browser window, a simple script is run which

searches the server file system for geometry files and returns the file names of all the

found geometries in the library as a single string delimited by the character ‘~’. This

allows the user to load a geometry file from the server into SAMSON and perform

simulations using this geometry. The script only contains about 20 lines of code and is

given as follows.

101

=� M� *�!� � N��!��!� O7BO� 2�%�! O�$��O ��0�<�
=� M� @&��$� � H�&������ OC'������O ��0���
=� M� @&��$� � H�&������ OC'���&#@JO ��0�-�
=� M� @&��$� � H�&������ OC'���&#P�%O ��0�;�
�:�
=��Q�
�K�
��$��! �������*�������L�
2�$����$' #G��R����� MO�/S���S����S�����-�S������SO (� O9# &�O(��.�
� � � � C��$��J����� #5��2�$����$����T�<��
�<<�
��$��! �$���$�C�$��!�� OOT�<��
�<-�
��$���� �� ��$��! �"����� �� �����*������<;�
��<:�
� �����C�$��!�
�"����T�<Q�
� �����C�$��!�
� UVUT�<K�
��<L�
�<.�
I�������#P$����$���$�C�$��!�T����
�0��<�

This script then returns a single string to the Flash interface which delimits the string

and builds a list of all the files in the appropriate folder. These files are then available for

use in SAMSON. Adding geometries to or removing geometries from the geometry

library is then as simple as adding or deleting files in the appropriate location (only

available to those with access to the server).

6.2 Remote calculations

A server cluster consists of a set of connected servers that work together so closely

that in many respects, they can be viewed as a single system. Server clusters can be

utilized to perform large scale calculations using parallel processing techniques. The

capabilities of clusters have increased tremendously over the last couple decades and

clusters continue to become more affordable20. In 1997, the top cluster in the world was

housed at Sandia National Labs and was capable of about 2 TFLOPs (tera-floating-point

operations per second)20. The current cluster used for this project at the University of

Oklahoma is theoretically capable of 4.1 TFLOPs20.

102

The HPC cluster has much greater computing power than personal machines, greatly

reducing the computational time required for 3D FEM problems that commonly approach

50,000 degrees of freedom for even simple models used in education. Utilizing the

cluster to perform calculations remotely requires communication between the web-based

interface and the remote server. Flash tools can make simple HTTP function calls to the

website to run server scripts (as was used in the geometry library), but these Flash

functions have two major limitations, text is transmitted as strings and it is

synchronous20. Third party media servers such as Red5, WebOrb, LiveCycle, or Wowza

can be installed on the cluster and used as an alternative to built-in Flash HTTP function

calls20.

These tools allow the web-based interface to communicate with the server through

dedicated channels using sockets20. Sockets provide asynchronous communication

between the server and the web client20. Sockets allows the server to communicate with

the client at any time, allow multiple function calls from the client, and transmit data in

binary (not requiring data conversion)20. This project uses WebOrb since it works with

ASP.NET and is free for university community licenses20, 40. WebOrb allows the web

client to call a function on the server and communicate input parameters specified by the

user. The function on the server is part of a compiled DLL (HPC Windows 2008

operating system) that acts as the job control program20.

A basic cluster configuration requires one node designated as the head node, which

delegates responsibilities to the remaining compute nodes20. The head node allows

individual jobs to be scheduled and submitted and in turn, assigns these jobs to available

compute nodes20. The term “job” refers to the execution of another program available to the

103

compute nodes, in this case, an executable (.exe) file constructed separately20. In general, a

user (or web client) submits a job to the head node. The head node delegates the calculations

required to complete the job to available compute nodes. The job is run, and the results are

written to a file. The user can then access the file to view the results or, as in the case of

SAMSON, the head node will reopen the results file, read in the results, and return these

results to the web client.

Job submissions are done through a server job control program custom tailored to

SAMSON (see Appendix B: Job control program). The developed job control program

accepts input parameters from the web client (Flash), sets up the job dynamically, assigns

tasks to the job, specifics the computational resources (1-12 cores), and sets job timeout

limits20. The term “task” refers to the actual actions assigned to the compute nodes. In

this case, the assigned task will be to run an executable program specifically designed to

perform meshing and FEM operations for SAMSON. The executable is the third and final

component of the system that includes: (1) Flash web client, (2) job control program, and

(3) the executable. The executable program was compiled separately so that multiple

instances of the solver can be run at any given time from different nodes20. Additionally,

the executable program was compiled in two programming languages, C# and C++. This

allows the efficiency of the two programming languages to be compared directly.

Communication between the web client and the cluster is summarized as follows.

1. The user provides input to the simulation using the web-based client (Flash).

2. The web-client then sends the input parameters (geometry, meshing information,

material constants, etc.) to the cluster head node by making a remote function call

104

(also called “remoting”) to the server to start the job control program20. The input

parameters are passed directly to the job control program in binary.

3. The job control program accepts the input information and writes it to an input

text file on the server. The job control program then builds and submits a new job

to an available compute node.

4. The compute node then runs the executable which reads in and deletes the input

text file. The executable runs the simulation and writes the results to an output

text file. When the job is complete, the compute node notifies the job control.

5. The job control program reads the results in from the output text file and deletes

it. The job control program delivers the results back to the web client in binary.

6. Finally, the web client interprets the results by parsing the information into its

native format and displays the results in a useful form to the user.

105

Note that all communication between the job control program and executable is

accomplished through reading and writing text files on the server. All communication

between the web client and the job control is done in binary using WebOrb. A simple

process map of cluster access is given in Figure 6.1.

Figure 6.1: HPC cluster utilization process map

The cluster can be used to run both the meshing and the FEM solving routines. All

remote meshing calculations utilize one core of a given compute node as these routines

were developed independently of any parallel processing library. Developing parallel

processing techniques to utilize multiple cores for mesh generation was beyond the scope

of this project.

The FEM solving routine is able to utilize multiple cores by taking advantage of the

Intel MKL (Math Kernel Library)25. The Intel MKL has numerous efficient algorithms for

numerically solving common mathematical problems. Most notably, the Intel MKL has a

built-in routine for the inversion of large banded matrices (the LAPACKE_dpbsv routine)25.

Web interface
accessed via
local machine

Available
compute node

Head node
containing job
control script

The online
interface

passes input
parameters to

head node.

1

The head node
writes the input
parameters to a
text file and calls

the FEM or
meshing routine.

2

The compute node
solves and writes

output to a text file.

3 4

The head node
reads the output file
and returns results.

Binary communication using WebOrb

Communication through text files

106

This routine was used to invert the global stiffness matrix and multiply the inverted matrix by

the applied loads to find the displacements. This matrix inversion and multiplication is by far

the most computationally intensive process in the FEM solving routine and accounts for the

majority of the time required to run the solving routine. The implementation of this routine

requires the banded global stiffness matrix (as pictured in Figure 3.4) to be stored as a single

dimensional array. This routine can use from 1 to 12 cores (maximum cores per node).

However, the remaining calculations in the FEM solving routine are performed using one

core of a given compute node. This includes, building the global stiffness matrix,

applying boundary conditions and loads to the model, and back solving for elemental

stresses and strains.

The number of cores available for a single simulation is limited to 12 which is the

maximum number of cores on a single node. This is done for two primary purposes. It is

expected that multiple users may wish to access the HPC cluster to run simulations using

either SAMSON or other developed applications. Therefore, it would be unwise to allow

a single user access to more than 12 cores for a given simulation to avoid long wait times

for other users. Additionally, utilizing more than 12 cores requires utilizing multiple

nodes, and the processes for sharing memory between nodes and passing information

using MPI (Message Passing Interface) is complex.

107

7 Results

7.1 Comparison to theory

The sample problem presented in Figure 2.1 was solved for various mesh refinements

both utilizing the HPC cluster and solving the simulation locally. The obtained results

were compared to elementary beam theory, and calculation times were compared for

locally and remotely performed meshing and solving.

The centerline deflections were found using SAMSON and compared to elementary

beam theory given as shown in Figure 7.1. It was found that, as the number of generated

nodes was increased, the engineering tool converged near to the beam theory results with

the highest mesh refinement used having an almost uniform 4-5% error in the predicted

displacement. Recall that the number of degrees of freedom (DOF) is equal to 3n where n

is the number of nodal points.

Figure 7.1: SAMSON results compared to theory

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0 40 80 120 160 200 240

C
en

te
rli

ne
 B

ea
m

 D
ef

le
ct

io
n

(in
)

Distance from Left Wall (in)

Elementary Beam Theory
252 DOF
1,107 DOF
2,928 DOF
6,075 DOF
10,908 DOF
27,072 DOF
39,123 DOF
72,963 DOF
122,187 DOF

108

7.2 Meshing runtimes

Solution run times were compared for meshing and solving when the calculations

were performed locally and remotely. All local calculations were performed on an Intel

Core2 Duo CPU P8700 at 2.53 GHz and using 4.0 GB of RAM.

The times required to generate an ordered mesh for the 1x1x20 ft beam were

measured. The results are summarized in Table 7.1. Notice that the total time required to

mesh the geometry became significantly less for more refined meshes when the ordered

meshing was performed remotely. The total remote meshing runtime is divided into

“mesh runtime” and “data transfer” time. “Calculation time” is a subset of “mesh

runtime” that does not include reading the input file or writing to the output file. It is

interesting to note that the “calculation time” from the remote routine section covers

equivalent processes as the “total” meshing time locally. For example, for the finest mesh

created locally, it required 40.27 seconds to mesh the object. These same calculations

were performed remotely in 6.515 seconds. An additional 1.965 seconds were required

for string manipulation, reading and writing to text files, and transferring the data to/from

the server. All remote meshing calculations utilized one core of a given compute node.

Table 7.1: Local vs. remote runtimes for ordered meshing

Mesh Local Time (sec) Remote Times (sec)
Nodes Elements TOTAL Total Calculation Mesh Runtime Data Transfer

84 120 0.046 0.671 0.001 0.003 0.668
369 960 0.072 0.682 0.008 0.016 0.666
976 3,240 0.393 0.808 0.066 0.086 0.722

2,025 7,680 1.713 1.138 0.363 0.408 0.730
3,636 15,000 5.857 1.780 1.041 1.094 0.686
5,929 25,920 16.42 3.572 2.729 2.821 0.751
9,024 41,160 40.27 7.263 6.515 6.655 0.608
13,041 61,440 >60 15.26 14.39 14.60 0.655
24,321 120,000 >60 54.16 51.42 51.87 2.289
40,729 207,360 >60 157.7 152.8 153.5 4.183

109

The times required to generate an ordered mesh were measured using executables

compiled in C# and C++. The results presented in Table 7.1 were obtained using the C++

executable as C++ was found to be significantly more efficient than C#. In fact, meshing

runtimes for the C# compiled executable were consistently greater than those generated

locally using ActionScript. This was due to the fact that C# considerable more data

conversation and string manipulation than the C++ executable, and the C# executable

used inherently slow ArrayList variables while the C++ executable used much more

efficient vector variables. The only advantage of C# over meshing locally was that using

the remote cluster bypassed the 60 second time limit imposed by Flash. Meshing

runtimes for local and remote calculation of an ordered mesh are given in Table 7.2.

Remote runtimes include the data transfer time. An arbitrary time limit of three minutes

was imposed for the remote meshing routines.

Table 7.2: Programming language runtimes for ordered meshing

Mesh Local Time (sec) Remote Times (sec)
Nodes Elements ActionScript C++ C#

84 120 0.046 0.671 0.987
369 960 0.072 0.682 1.040
976 3,240 0.393 0.808 1.560

2,025 7,680 1.713 1.138 3.340
3,636 15,000 5.857 1.780 8.992
5,929 25,920 16.42 3.572 24.92
9,024 41,160 40.27 7.263 61.21
13,041 61,440 >60 15.26 122.6
18,100 87,480 >60 29.33 >180
24,321 120,000 >60 54.16 >180
31,824 159,720 >60 94.61 >180
40,729 207,360 >60 157.7 >180

These results are summarized visually in Figure 7.2. The advantages to the C++

compiled executable are significant.

110

Figure 7.2: Ordered meshing runtimes vs. number of generated nodes

7.3 Solving runtimes

The times required to solve the FEM simulation for the meshes described in Table 7.1

were measured. The results are summarized in Table 7.3. Notice that the total time

required to solve the simulation was dramatically reduced utilizing the HPC cluster, even

for relatively coarse mesh generation. It is also interesting to note that more finely

generated meshes quickly require more time locally than is allowed by Flash. Therefore,

for anything but the coarsest of meshes, the HPC cluster is required to solve the

simulation.

0

20

40

60

80

100

120

140

160

180

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000

M
es

hi
ng

 R
un

tim
e

(s
ec

)

Number of Generated Nodes

C# Compiler

C++ Compiler

ActionScript

111

Table 7.3: Local vs. remote runtimes for FEM solver routine

Stiffness Matrix
Local Time (sec) Remote Times (sec)

TOTAL Total Calculation Solver Runtime Data Transfer
252 x 195 0.151 0.739 0.094 0.124 0.615

1,107 x 498 5.422 0.934 0.156 0.187 0.747
2,928 x 921 >60 1.223 0.281 0.436 0.787

6,075 x 1,464 >60 2.350 0.686 1.045 1.305
10,908 x 2,127 >60 4.234 1.467 1.996 2.238
17,787 x 2,910 >60 6.711 3.229 4.305 2.406
27,072 x 3,813 >60 12.62 6.895 8.673 3.948
39,123 x 4,836 >60 25.71 15.66 18.38 7.338
72,963 x 7,242 >60 88.64 60.95 66.28 22.36

122,187 x 10,128 >60 241.6 192.5 202.9 38.68

All the results in Table 7.3 utilized 12 cores for the inversion of the global stiffness

matrix. Some interesting trends become apparent. For coarse meshes, the data transfer

accounts for the most significant amount runtime. For finer meshes, the global stiffness

inversion accounts for the most significant amount runtime. For the finest mesh (40,729

nodes), the MKL operations required 187.6 seconds, accounting for 78% of the total

FEM solving routine runtime. Data transfer accounted for 17% of the total FEM solving

routine runtime. Therefore, operations that utilized only one core on the cluster accounted

for 5% of the total runtime. For the next finest mesh (24,321 nodes), the MKL operations

required 55.77 seconds, accounting for 63% of the total FEM solving routine runtime.

Data transfer accounted for 25% of the total FEM solving routine runtime. Therefore,

operations that utilized only one core on the cluster accounted for 12% of the total

runtime. In fact, for any simulation run requiring more than 15-20 seconds, the MKL

operations and the data transfer will be the most significant operations as far a runtime is

concerned. For fine meshes, the operations using only one core require a much less

significant amount of time to perform.

112

It was desired to compare the times required to perform the MKL routines using a

varying number of cores. The same simulation was run for the next finest mesh (24,321

nodes) using 1, 2, 4, 8, and 12 cores. The remote calculation times are summarized in

Table 7.4 and visualized in Figure 7.3.

Table 7.4: Remote runtimes varying the number of cores

Cores Remote Times (sec)
Total Calculation MKL Solver Runtime Data Transfer

1 435.8 412.6 409.3 415.7 20.12
2 233.5 209.8 206.0 212.4 21.04
4 136.7 109.2 106.1 112.1 24.58
8 90.51 60.98 57.56 63.82 26.70

12 88.64 60.95 55.77 66.28 22.36

Figure 7.3: Remote runtime vs. number of cores for 72,963 DOF

The curve pictured in Figure 7.3 is typical of runtime improvement as the number of

cores is increased. Initially, increasing the number of cores produces a significant

decrease in runtime, but this improvement becomes less pronounced as the number of

cores continues to increase. In fact, there is almost no improvement by increasing from 8

to 12 cores.

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14

R
un

tim
e

(s
ec

)

Number of Cores

��������	�
��

�����	�
��

113

7.4 Comparison to other FEM software packages

Finally, the results from SAMSON were compared to results obtained using

SolidWorks Simulation, a FEM software package available to use within SolidWorks

CAD suite42. The same problem described in Figure 2.1 was solved. However, the

material properties were changed to match the SolidWorks material properties for balsa

wood (Young’s Modulus of 435,113.1 psi and Poisson’s Ratio of 0.29)42. In SolidWorks,

a tetrahedral mesh was generated for identical geometry (1x1x20 ft rectangular beam) as

that created using Google SkethUp. The “draft quality” mesh was specified to generate

four-node, solid, linear elements identical to those generated by SAMSON. The results of

the simulation runs using SAMSON are given in Figure 7.4. The results of the simulation

runs using SolidWorks Simulation are given in Figure 7.5. Direct comparisons of solution

convergence are given in Figure 7.6 through Figure 7.8.

114

Figure 7.4: SAMSON results compared to theory for balsa wood beam

Figure 7.5: SolidWorks Simulation results compared to theory for balsa wood beam

-2.5

-2

-1.5

-1

-0.5

0
0 40 80 120 160 200 240

C
en

te
rli

ne
 B

ea
m

 D
ef

le
ct

io
n

(in
)

Distance from Left Wall (in)

Elementary Beam Theory

SAMSON 369 Nodes

SAMSON 976 Nodes

SAMSON 2,025 Nodes

SAMSON 13,041 Nodes

SAMSON 40,729 Nodes

-2.5

-2

-1.5

-1

-0.5

0
0 40 80 120 160 200 240

C
en

te
rli

ne
 B

ea
m

 D
ef

le
ct

io
n

(in
)

Distance from Left Wall (in)

Elementary Beam Theory

SolidWorks 1,055 Nodes

SolidWorks 10,637 Nodes

SolidWorks 36,085 Nodes

115

Figure 7.6: SolidWorks Simulation and SAMSON convergence (~103 nodes)

Figure 7.7: SolidWorks Simulation and SAMSON convergence (~104 nodes)

-2.5

-2

-1.5

-1

-0.5

0
0 40 80 120 160 200 240

C
en

te
rli

ne
 B

ea
m

 D
ef

le
ct

io
n

(in
)

Distance from Left Wall (in)

Elementary Beam Theory

SAMSON 976 Nodes

SolidWorks 1,055 Nodes

SAMSON 2,025 Nodes

-2.5

-2

-1.5

-1

-0.5

0
0 40 80 120 160 200 240

C
en

te
rli

ne
 B

ea
m

 D
ef

le
ct

io
n

(in
)

Distance from Left Wall (in)

Elementary Beam Theory

SAMSON 13,041 Nodes

SolidWorks 10,637 Nodes

116

Figure 7.8: SolidWorks Simulation and SAMSON convergence (~ 4×104 nodes)

It was found that the SolidWorks Simulation results converge to the beam theory

solution more quickly than SAMSON. However, the convergences appear to be of the

same order. The discrepancies are most likely due to a higher-quality solution algorithm

used by SolidWorks Simulation than created for SAMSON and a higher quality mesh

generated by SolidWorks Simulation. However, it is hard to define the exact reasons for

the discrepancy as the routines used by SolidWorks Simulation for meshing and solving

are proprietary and not available for analysis.

-2.5

-2

-1.5

-1

-0.5

0
0 40 80 120 160 200 240

C
en

te
rli

ne
 B

ea
m

 D
ef

le
ct

io
n

(in
)

Distance from Left Wall (in)

Elementary Beam Theory

SAMSON 40,729 Nodes

SolidWorks 36,085 Nodes

117

8 Conclusion

A web-page based online, interactive engineering tool referred to as SAMSON (Solid

Analysis Meshing and Solving ONline) was developed. SAMSON accesses a remote

HPC cluster to perform FEM analysis quickly and efficiently. SAMSON consists of a

webpage-based user interface run in Flash Player and a remote back-end capable of

performing complex calculations utilizing parallel processing techniques on a HPC

cluster. 3D geometry files can be generated using free 3D modeling software and

imported into SAMSON, or geometries can be loaded from a geometry library.

SAMSON volumetrically meshes the imported geometry using tetrahedral elements to a

user defined level of refinement. Loads and boundary conditions are then applied to the

FEM model, and the program solves for nodal displacements, elemental strains, and

elemental stresses. When solving the simulation, SAMSON allows the user to run the

desired calculations locally on a personal machine or remotely using the HPC cluster.

SAMSON has been included within the appropriate content of a solid mechanics

eBook. Providing such a tool serves to enhance education by allowing students to

visualize deflections and stress fields as applied to 3D components and introducing

students to the basic concepts of the finite element method. SAMSON is accessible to

educators wishing to demonstrate engineering concepts and prompt in-class discussion of

course material. In the professional environment, SAMSON represents substantial

progress towards an alternative to expensive, locally installed FEM packages. SAMSON

proves the feasibility of performing complex FEM simulations efficiently by accessing

remote a HPC cluster from a webpage. SAMSON is currently hosted on University of

Oklahoma servers and has been made available to use freely by anyone with an internet

118

connection. The tool is browser based and requires no program installation other than

Flash Player making it accessible from remote or field locations. The available option to

perform all calculations on a remote HPC cluster allows less powerful devices to act as

an interface for setting boundary conditions and viewing results without performing the

computationally intensive calculations locally.

This thesis detailed the theory and numerical techniques used in implementing the

finite element method and mesh generation into SAMSON. Similarly, this thesis detailed

implementing remote access to a HPC cluster and utilizing parallel processing on this

cluster. The data structure of 3D COLLADA models was presented, and specific

techniques (some not directly utilized in SAMSON) were presented for the general

improvement of the reader. These include incremental methods for constructing 2D and

3D Delaunay triangulations, a technique for finding the closest point on a triangle to

another point in 3D, and a basic script for accessing files on a remote server.

8.1 Contributions and accomplishments

In the development of SAMSON, a robust, complete engineering tool was

successfully built. SAMSON integrates 3D model import, 3D mesh generation, FEM

analysis, and remote parallel processing into an easily accessible, webpage-based

application with an intuitive user interface. Methods for accessing FEM simulations

through a webpage were developed. A user friendly input module (webpage-based

graphical user interface) was built that allows the user to define geometry and boundary

conditions. An automated job control system for web access to the remote cluster was

custom tailored for SAMSON. Efficient parallel processing methods were investigated

and implemented into SAMSON. Original algorithms for both 3D meshing and FEM

119

analysis were written. Guidelines for efficient core utilization were set, and an

infrastructure was created to automatically display results to the user’s webpage. All of

this was constructed for use by the average engineer who lacks a strong computer science

background. SAMSON is designed for engineering students, instructors, and professional

with no experience in cluster parallel computing or the finite element method. Finally,

SAMSON is free to access by anyone, anywhere in the world, even from portable devices

such as smartphones, laptops, and tablets.

8.2 Future development

Great strides have been made in order to progress SAMSON to this level of

refinement. However, there are currently many limitations to the use of SAMSON. There

are several areas in which SAMSON is in need of further development.

Future development of SAMSON should look to improve the random mesh

generation algorithm. The author recommends investigation into octree methods which

are extremely popular in many 3D mesh generation software programs. Additionally,

almost all commercially available or professionally produced mesh generation codes

include a mesh refinement step after the mesh has been generated. For example, further

development should investigate methods to optimize nodal locations after the

tetrahedralization has been built. This is done to minimize the number of elements with

poor aspect ratio.

SAMSON is currently written in pure ActionScript and built using the Flash

framework. SAMSON should be developed using the Flex framework which contains

much greater functionality for interaction with remote servers as well as advantages in

120

building interfaces. The Flex framework is more easily integrated with WebOrb and has

access to more interface classes. However, developing inside the Flex framework greatly

increases the file size of the compiled application (by a factor of 5 to 10).

Currently, all 3D rendering inside of SAMSON is done using Papervision3D.

Papervision3D is an open source real time 3D engine for Flash Player that was developed

primarily for Flash-based online games. Papervision3D has been replaced by Away3D

which utilizes the new native 3D rendering capabilities of Flash Player 11 and Adobe

AIR 3. This has the potential to greatly improve the 3D rendering, especially for fine

meshes where many triangles are rendered. Unfortunately, like Papervision3D, Away3D

uses a left-handed coordinate system for rendering. Additional investigation should

include using a right-handed coordinate system inside of Away3D.

All remote mesh generation and some FEM implementation is currently solved on the

HPC cluster using only one core. Parallel processing techniques for these processes

should be investigated to improve calculation runtimes and to efficiently utilize the HPC

cluster’s full capabilities. Finally, further development should assess the feasibility of

utilizing more than 12 cores. Utilizing more than 12 cores requires utilizing multiple

nodes, and the processes for sharing memory between nodes and passing information

using MPI (Message Passing Interface) is complex. However, multiple nodes will be

needed to solve extremely large simulations requiring a large amount of memory.

121

9 References

[1] Arnaud, R., & Barnes, M. C. (2008). COLLADA: Sailing the Gulf of 3D Digital
Content Creation. A K Peters, Ltd.

[2] Gramoll, K. Multimedia Engineering Mechanics of Materials. Retrieved from

https://ecourses.ou.edu/cgi-bin/ebook.cgi?doc=&topic=me

[3] Gramoll, K. (2007, June). “A Web-based Electronic Book (eBook) for Solid
Mechanics.” Paper presented at 2007 ASEE Annual Conference, Honolulu, HI.
DOI: AC 2007-785

[4] Morales, C. (2011, June). “Development of a Multi-Platform (PC, iPad, Mobile)

eBook Platform.” Paper presented at 2011 ASEE Annual Conference, Vancouver,
Canada. DOI: AC 2011-2352

[5] Gramoll, K. (1999, June). “Teaching Statics Online with only Electronic Media

on Laptop Computers.” Paper presented at 1999 ASEE Annual Conference,
Charlotte, NC. DOI: AC 1999-1668

[6] Vikas, Y., Romanello, T., & Gramoll, K. (2000, June). “Teaching Dynamics

Online with only Electronic Media on Laptop Computers.” Paper presented at
2004 ASEE Annual Conference, St. Louis, MO. DOI: AC 2000-3666

[7] Ngo, C. & Lai, F. (2003). “An Online Thermodynamics Courseware,” Computer

Applications in Engineering Education, Vol. 11, pp. 75-82

[8] Huang, M. & Gramoll, K. (June, 2004). “Online Interactive Multimedia for
Engineering Thermodynamics,” Paper presented at 2004 ASEE Annual
Conference, Salt Lake City, UT. DOI: AC 2004-3166

[9] Gramoll, K. & Ngo, C. (2004, June). “A Web-based Electronic Book (eBook) for

Fluid Mechanics.” Paper presented at 2004 ASEE Annual Conference, Salt Lake
City, UT. DOI: AC 2004-1793

[10] Morales, C. (2011, June). “Implications of Publishing eBooks on PCs and Mobile

Devices for Engineering Technology Educators.” Paper presented at 2011 ASEE
Annual Conference, Vancouver, Canada. DOI: AC 2011-2345

[11] Dhondt, G., & Wittig, K. Calculix: A Free Software Three-Dimensional

Structural Finite Element Program. Retrieved from http://www.calculix.de/

[12] Rieg, F. Z88 Aurora. Retrieved from http://www.z88.de/

[13] Patzák, B. (2000). OOFEM project home page. Retrieved from
http://www.oofem.org

122

[14] Baylor, J. (2011). bConverged. Retrieved from http://www.bconverged.com/

[15] Winder, J., & Tondeur, P. (2011). Papervision3d Essentials. Birmingham, UK:

Packt Pub Ltd.

[16] Chandrupatla, T. R., & Belegundu, A. D. (2004). Introduction to Finite Elements
in Engineering. Upper Saddle River, NJ: Prentice Hall.

[17] George, P., & Borouchaki, H. (1998). Delaunay Triangulation and Meshing,

Application To Finite Elements. Paris, France: Hermès.

[18] Logan, D. L. (1992). A First Course in the Finite Element Method. Boston, MA:
PWS Publishing Company.

[19] Weaver, W., & Gere, J. M. (1990). Matrix Analysis of Framed Structures. Kluwer

Academic Publishers.

[20] Gramoll, K. (2012, June). “Development and Implementation of a High
Performance Computer (HPC) Cluster for Engineering Education Simulations.”
Paper presented at 2012 ASEE Annual Conference, San Antonio, TX.

[21] Zienkiewicz, O. C., Taylor R. L., & Zhu, J. Z. (2005). The Finite Element
Method: Its Basis and Fundamentals. Oxford Boston: Elsevier Butterworth-
Heinemann.

[22] Mase, G. (1970). Schaum's outline of theory and problems of continuum

mechanics. New York: McGraw-Hill.

[23] Gibson, R. (1994). Principles of composite material mechanics. New York:

McGraw-Hill.

[24] Kazimi, S. (1982). Solid mechanics. New Delhi, India: Tata McGraw-Hill.

[25] Intel. Intel® Math Kernel Library for Windows* OS User's Guide (Document

Number: 315930-017US). Retrieved from website: http://software.intel.com/sites/
products/documentation/hpc/mkl/mkl_userguide_win/mkl_userguide_win.pdf

[26] Google SketchUp (Version 8) [Software]. (2012). Google, Inc. Retrieved from

http://sketchup.google.com/intl/en/download/

[27] “XML.” Wikipedia: The Free Encyclopedia. (2001, Nov. 18). Retrieved from
http://en.wikipedia.org/wiki/XML

[28] Braunstein, R. (2010). ActionScript 3.0 Bible. Indianapolis, IN: Wiley Pub., Inc.

123

[29] Shewchuk, J. (2012). Unstructured Mesh Generation Chapter 10 of
Combinatorial Scientific Computing. (Uwe Naumann and Olaf Schenk, editors),
pages 259–298. Boca Raton: CRC Press.

[30] Eberly, D. (2008, Mar. 01). Distance Between Point and Triangle in 3D.

Retrieved from http://www.geometrictools.com/Documentation/
DistancePoint3Triangle3.pdf

[31] “Delaunay Triangulation.” Wikipedia: The Free Encyclopedia. Retrieved from
http://en.wikipedia.org/wiki/Delaunay_triangulation

[32] Delaunay, B. (1934). “Sur la sphère vide.” Izvestia Akademii Nauk SSSR.
Otdelenie Matematicheskikh i Estestvennykh Nauk. Vol. 7, pp. 793–800

[33] Frey, P. J. & George, P. (2000). Mesh Generation: Application to Finite

Elements. Oxford, United Kingdom: Hermes.

[34] Lambert, T. (1998, Sept. 23). “Convex Hull Algorithms.” The University of New

South Whales, School of Computer Science and Engineering. Retrieved from
http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

[35] Priester, Sjaak. (2005, Jul. 19). “Delaunay Triangles.” Weblog post. CodeGuru.
QuinStreet Inc., Web. 07 Feb. 2012. Retrieved from
http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901

[36] Weisstein, E. W. “Circumcircle.” MathWorld – A Wolfram Web Resource.
Retrieved from http://mathworld.wolfram.com/Circumcircle.html

[37] “Quicksort.” Wikipedia: The Free Encyclopedia. Retrieved from

http://en.wikipedia.org/wiki/Quicksort

[38] Weisstein, E. W. “Circumshpere.” MathWorld – A Wolfram Web Resource.

Retrieved from http://mathworld.wolfram.com/Circumsphere.html

[39] “Internet Information Services.” Wikipedia: The Free Encyclopedia. Retrieved

from http://en.wikipedia.org/wiki/Internet_Information_Services

[40] “WebORB for .NET.” MidnightCoders. Retrieved from

http://www.themidnightcoders.com/products/weborb-for-net/

[41] Ethan Purich. (2012, January 01). WolframAlpha. Retrieved from

http://www.wolframalpha.com/

[42] SolidWorks Simulation. (2012). Dassault Systèmes. SolidWorks Corp.

124

[43] Freitag, L. & Knupp, P. (1999). “Tetrahedral Element Shape Optimization via the
Jacobian Determinate and Condition Number.” Argonne National Laboratory:
Mathematics and Computer Science Division. DOI: ANL/MCS/CP-99689

125

10 Appendices

10.1 Appendix A: Finding the closest point on a triangle in 3D

10.1.1 Mathematical formulation

The problem is to compute the minimum distance between a point P and a triangle
T(s, t) = B + sE0 + tE1 for (s, t) m D = {(s, t) : s m [0, 1], t m [0, 1], s + t n 1} 30. The
minimum distance is computed by locating the values (op, Hp) m D corresponding to the
point on the triangle closest to P. (See Figure 10.1.)

Figure 10.1: Point and triangle in 3D

The squared-distance function for any point on the triangle to P is Q(s, t) = |T(s, t) � P|2
for (s, t) m D. The function is quadratic in s and t,

q � o� H� � ro � � �soH � tH � � �Vo � �GH � u

where a = E0 · E0, b = E0 · E1, c = E1 · E1, d = E0 · (B � P), e = E1 · (B � P), and
f = (B � P) · (B� P) 30. Quadratics are classified by the sign of ac � b 2. For the function,

rt � s � � �
 � i
 � ��
 � i
 � � � �
 � i
 � � � � v
 � �
 � v� k �

The positivity is based on the assumption that the two edges E0 and E1 of the triangle are
linearly independent, so their cross product is a nonzero vector.

In calculus terms, the goal is to minimize Q(s, t) over D. Since Q is a continuously
differentiable function, the minimum occurs either at an interior point of D where the
gradient wQ = (0, 0) or at a point on the boundary of D 30. The gradient is defined as

126

follows. wQ = (Qs, Qt) where Qs and Qt are partial derivatives with respect to s and t.
Therefore, wQ = 2(as + bt + d, bs + ct + e)

The gradient of Q is zero only when op = (be � cd) / (ac � b2) and Hp = (bd – ae) / (ac � b2).
If (op, Hp) m D, then Q has been minimized. Otherwise, the minimum must occur on the
boundary of the triangle30. To identify the correct boundary, consider Figure 10.2.

s

t

(1, 0)

(0, 1)

Region 1

Region 6Region 5Region 4

Region 3

Region 2

D

Figure 10.2: Boundary regions of a triangle in 3D

The central triangles is the domain of Q, (s, t) m D. If (op, Hp) is in the domain D, then then
point on the triangle closest to P is in the interior of the triangle30.

Suppose that (op, Hp) is inside Region 1. Q is a paraboloid, so the level curves are
manifested as ellipses in the s, t plane30. At the point where wQ = (0, 0), the level curve
degenerates to a single point (op, Hp). The global minimum of Q occurs there and has a
value Qmin. As the level values Q increase from Qmin, the corresponding ellipses grow
increasingly further away from (op, Hp) 30. Then there exists a smallest value of Q(s, t) = Qo
such that the ellipse will just touch the triangle domain edge defined by s + t = 1 at a
value (so m [0, 1], to = so – 1) 30. This value of (so, to) provides the minimum squared-
distance between P and the triangle. These concepts are illustrated in Figure 10.3. In the
end point cases, the ellipse may just touch one of the vertices of D.

127

Figure 10.3: Level curves of Q(s, t)

If (op, Hp) is inside Region 3 or Region 5, the same process can be applied. If (op, Hp) is inside
Region 3, then the minimum occurs at (0, to) for some to m [0, 1] 30. If (op, Hp) is inside
Region 5, then the minimum occurs at (so, 0) for some so m [0, 1] 30.

If (op, Hp) is inside Region 2, then the level curve does one of the following:

1. Touches the corner at (0, 1)
2. Touches the edge for which s = 0
3. Touches the edge for which s + t = 1.

At any point on the level curve, -wQ is in the direction towards the inside of the level
curve ellipse, which implies that it cannot point into the triangle30. Therefore, the
direction of -wQ can be used to determine which of the three cases apply. This is shown
in Figure 10.4. The same argument is used for Region 4 and Region 6.

Figure 10.4: Three cases for level curve with center in Region 2

128

10.1.2 Implementation

The following code applies the mathematical formulation given above. The provided
function (written in C++) takes four double arrays representing four vectors in 3D. The
first three vectors, A, B, and C completely define a triangle in 3D. The function returns a
vector of the closest point on the triangle to the fourth vector, D.

��999 9999999999999999999999999999999�<�
��9�R�$����$���!������-2���������%'������������5�� � ('(3�(�6��� ('(3�����������9���
��9�7� ('(3�(��������������������$���$������������ ����������������$���!���������9�-�
��9�$����&�������2� ('(3�#����������9 �;�
��999 9999999999999999999999999999999�:�
�Q�
���%�� 9��������*����J��$���!��� ���%�� �5�-�(� ���%�� �6�-�(� ���%�� �7�-�(� ���%�� �2�-���K�
��L�
�.�
��2���������$�&����������-2��$���!�������������!��� ����,��������$�%����� �<��
��2��������6�������*����������$���!������-2�%'�2�"� ��+%�$�'(�G��&��$��������(�NN7#�<<�
��+ �&�����������/�<��
������/�����#!��&��$�������#��&�N�%E����&������2��� �����2�������#��&��<-�
�<;�
���%�� ���!���-����6����4�5���(�6�<��4�5�<�(�6����4�5���� T�<:�
���%�� ���!�<�-����7����4�5���(�7�<��4�5�<�(�7����4�5���� T�<Q�
���%�� �"��-����5����4�2���(�5�<��4�2�<�(�5����4�2����T�<K�
� � � �<L�
���%�� ��������!������9���!������
���!���<��9���!���<��
� ��!������9���!�����T�<.�
���%�� ���<����!������9���!�<����
���!���<��9���!�<�<��
� ��!������9���!�<���T����
���%�� ��<<����!�<����9���!�<����
���!�<�<��9���!�<�<��
� ��!�<����9���!�<���T��<�
���%�� �%�����!������9�"�����
���!���<��9�"��<��
���!���� ��9�"����T����
���%�� �%<����!�<����9�"�����
���!�<�<��9�"��<��
���!�<�� ��9�"����T��-�
���%�� ����"�����9�"�����
�"��<��9�"��<��
�"�����9�"����T ��;�
� � � ��:�
���%�� �������%������9��<<�4���<�9���<�T��Q�
���%�� ������<�9�%<�4��<<�9�%�T��K�
���%�� ������<�9�%��4�����9�%<T��L�
� � � � � ��.�
�� ����
���=�������-��
��-<�
� �� ����=�����-��
� ��--�
� � �� ����=���� ����$�!����; �-;�
� � ��-:�
� � � �� ��%��=�����-Q�
� � � ��-K�
� � � � ����T�-L�
� � � � �� ���4%��0�������-.�
� � � � ��;��
� � � � � ���<T�;<�
� � � � ��;��
� � � � ���� �;-�
� � � � ��;;�
� � � � � ���4%�������T�;:�
� � � � ��;Q�
� � � ��;K�
� � � ���� �;L�
� � � ��;.�

129

� � � � ����T�:��
� � � � �� ��%<�0����:<�
� � � � ��:��
� � � � � ����T�:-�
� � � � ��:;�
� � � � ���� � �� ��4%<�0��<<��::�
� � � � ��:Q�
� � � � � ���<T�:K�
� � � � ��:L�
� � � � ���� �:.�
� � � � ��Q��
� � � � � ���4%<����<<T�Q<�
� � � � ��Q��
� � � ��Q-�
� � ��Q;�
� � ���� �� ���$�!����- �Q:�
� � ��QQ�
� � � ����T�QK�
� � � �� ��%<�0����QL�
� � � ��Q.�
� � � � ����T�K��
� � � ��K<�
� � � ���� � �� ��4%<�0��<<��K��
� � � ��K-�
� � � � ���<T�K;�
� � � ��K:�
� � � ���� �KQ�
� � � ��KK�
� � � � ���4%<����<<T�KL�
� � � ��K.�
� � ��L��
� ��L<�
� ���� � �� ����=����� ���$�!����: �L��
� ��L-�
� � ����T�L;�
� � �� ��%��0����L:�
� � ��LQ�
� � � ����T�LK�
� � ��LL�
� � ���� � �� ��4%��0������L.�
� � ��.��
� � � ���<T�.<�
� � ��.��
� � ���� �.-�
� � ��.;�
� � � ���4%�������T�.:�
� � ��.Q�
� ��.K�
� ���� �� ��������&����2 �.L�
� ��..�
� � ���&���&�&��������$��$������ �<���
� � ���%�� ���"2����<������T�<�<�
� � ��9���"2��T�<���
� � ��9���"2��T�<�-�
� ��<�;�
��<�:�
���� �<�Q�
��<�K�

130

� ���%�� ��&��(��&�<(���&�$(�����&T�<�L�
� � � �<�.�
� �� ����=����� ���$�!����� �<<��
� ��<<<�
� � �&������<�
�%�T�<<��
� � �&�<���<<�
�%<T�<<-�
� � �� ���&�<�0��&����<<;�
� � ��<<:�
� � � ��&�$���&�<�4��&��T�<<Q�
� � � ����&������4���9���<�
��<<T�<<K�
� � � �� ����&�$�0�����&��<<L�
� � � ��<<.�
� � � � ���<T�<���
� � � � ����T�<�<�
� � � ��<���
� � � ���� �<�-�
� � � ��<�;�
� � � � �����&�$�������&T�<�:�
� � � � ���<�4��T�<�Q�
� � � ��<�K�
� � ��<�L�
� � ���� �<�.�
� � ��<-��
� � � ����T�<-<�
� � � �� ���&�<�=����<-��
� � � ��<--�
� � � � ���<T�<-;�
� � � ��<-:�
� � � ���� � �� ��%<�0����<-Q�
� � � ��<-K�
� � � � ����T�<-L�
� � � ��<-.�
� � � ���� �<;��
� � � ��<;<�
� � � � ���4%<����<<T�<;��
� � � ��<;-�
� � ��<;;�
� ��<;:�
� ���� � �� ����=����� ���$�!����Q �<;Q�
� ��<;K�
� � �&������<�
�%<T�<;L�
� � �&�<������
�%�T�<;.�
� � �� ���&�<�0��&����<:��
� � ��<:<�
� � � ��&�$���&�<�4��&��T�<:��
� � � ����&������4���9���<�
��<<T�<:-�
� � � �� ����&�$�0�����&��<:;�
� � � ��<::�
� � � � ���<T�<:Q�
� � � � ����T�<:K�
� � � ��<:L�
� � � ���� �<:.�
� � � ��<Q��
� � � � �����&�$�������&T�<Q<�
� � � � ���<�4��T�<Q��
� � � ��<Q-�
� � ��<Q;�
� � ���� �<Q:�

131

� � ��<QQ�
� � � ����T�<QK�
� � � �� ���&�<�=����<QL�
� � � ��<Q.�
� � � � ���<T�<K��
� � � ��<K<�
� � � ���� � �� ��%��0����<K��
� � � ��<K-�
� � � � ����T�<K;�
� � � ��<K:�
� � � ���� �<KQ�
� � � ��<KK�
� � � � ���4%�������T�<KL�
� � � ��<K.�
� � ��<L��
� ��<L<�
� ���� �� ���$�!����< �<L��
� ��<L-�
� � ��&�$���<<�
�%<�4���<�4�%�T�<L;�
� � �� ����&�$�=����<L:�
� � ��<LQ�
� � � ����T�<LK�
� � � ���<T�<LL�
� � ��<L.�
� � ���� �<.��
� � ��<.<�
� � � ����&������4���9���<�
��<<T�<.��
� � � �� ����&�$�0�����&��<.-�
� � � ��<.;�
� � � � ���<T�<.:�
� � � � ����T�<.Q�
� � � ��<.K�
� � � ���� �<.L�
� � � ��<..�
� � � � �����&�$�������&T�����
� � � � ���<�4��T���<�
� � � ������
� � ����-�
� ����;�
����:�
� � � � � ���Q�
���%�� 9�$���$�*������ ��� � ���%�� �-�T���K�
$���$�*���������5����
���9���!������
���9���!�<��� T���L�
$���$�*�����<���5�<��
���9���!���<��
���9���!�<�<� T���.�
$���$�*���������5����
���9���!������
���9���!�<��� T��<��
��<<�
$���$� �$���$�*����T��<��

132

10.2 Appendix B: Job control program

����! �C'���&T�<�
����! �C'���&#P�%T���
����! �C'�����!�������T�-�
����! �C'���&#��&�$�T�;�
����! �C'�������������#G���$��T�:�
����! �C'���&#N��,T�Q�
����! �C'���&#�� �T�K�
����! �C'���&#@JT�L�
����! �C'�������������T�.�
�<��
����! �P�%�$%#E����!��!#5��#C�$"���T�<<�
����! �P�%�$%#E����!��!#5��T�<��
����! �P�%�$%#E����!��!#C�$"�$#5�����$T�<-�
����! �P�%�$%#E����!��!#5��#CJT�<;�
�<:�
����! �E��$�����#W��#C�������$T�<Q�
����! �E��$�����#W��#C�������$#*$���$����T�<K�
����! �C'���&#��$�����!T�<L�
�<.�
��&������ ����C����-�� � ����
��%��� � ����� � ���C����-�E���!�$ � � ��<�
��7N5CC�D5I@5N6+C����
��%��� � %��� ���%@�2����� ����� T��-�
�������������&� ���&%�$������$������%���������$���� �(�=<� ��;�
��%��� � ��� ����7�$�*�$H�����<�T����:�
����������Q�
��%��� � ��$��! ����"�I�&���� ���%�� ���������7���&�(� ��� ��������N��������(���K�

��� ������&����7���&�(� ���%�� �����C�����!(� ���%�� �+(� ���%�� ���(� ���%�� ��L�
�$����$�(� ���%�� ���"�$�����7���&�(� ��� ����$���!���7���&�(� ��� ����.�
�$���!��67�(� ���%�� �����$&���7���&���-��

��-<�
���� 2�����&� ����$��� 2�����&� #H��T�-��
�--�
���� ���!���$����$����&���$��!(�������$��������&� �-;�
���� ��� �����H�&�N��!����QT� ����$����&���$��!����!�� �-:�
���� ��$��! �)�������7��$����-Q�

O�%����!���	&���,$���"� '35672+RGWXYNEH*AIC�ZDP[\]< �-;:QKL.O T�-K�
�-L�

���� I����& �$���H�&�� ��� � I����& ��T�-.�
���� ���$ ������$��� ��� � ���$ �����H�&�N��!���T�;��
���� ��� ��������7��$7������)�������7��$�#N��!��T�;<�
�;��
���� ������&�����������$$��������(��#�#�W+52�<��$�YW+52< �� �;-�
���� C�$��! �����H���H�&��� +�"�$��&��� #E������H�&�T�;;�
�;:�
���� ��$ �� ��� �����T���=�����H�&�N��!��T��

��;Q�
������;K�
�����������$������)�������7��$��� ��� ���)�������7��$�#N��!����9�;L�

$���H�&#H� �2��%������T�;.�
������:��
�:<�
���� ��$��! �I���C�$��!�� ��� � ��$��! ����$��T�:��
���� C�$��! ������R���H�&��� O�����-�)@����)O �
�I���C�$��!�
� O#� �O T�:-�
���� C�$��! �������R���H�&��� O�����-�)J�����)O �
�I���C�$��!�
� O#� �O T�:;�
�::�

133

���� ����<�����������������������������$ �:Q�
���� @C�������$ ���������$�� ��� � C�������$ ��T�:K�
������������$#7������� O���������O �T� �:L�
�:.�
���� �������7$�������% �Q��
���� @C�������$X�% ���%����������$#7$����X�%��T�Q<�
������%#H�&��� O��%�O�
�I���C�$��!T�Q��
�Q-�
���� ����������������	��������������������������$��(���� ���������������������%���Q;�
�������������%��	��������� �Q:�
���� ��������������������%�����������&�������'(�%������� �����$��������������QQ�
������������������ �QK�
���� C�$��! ���&����$H���H�&��� OOT�QL�
���� ��$���� �� @C�������$H��� ������ �� ���������$#G��H���N���� ���� (� ���� ���Q.�
������K��
�K<�
�������� �� ������#H�&��1�����H���H�&���K��
������������� ����������������������������������&��������� �K-�
�K;�
������������ ��� ���$�H�&6��'���T�K:�
������������ ��$���� �� @C�������$7�$� ���$�� �� �����#G��7�$������KQ�
��������������KK�
�KL�

�� ����7���	��������$�(��/J������(�</@���(��/6��'(��K.�
������-/2$�����!(�;/$���$"�� �L��
�� �������'���%���$�&���������$�&�	�����$��%��'����&&� ������������� �L<�
����������$�!����$� �L��
�� ������������������$�����%��'(�!������� ������ �L-�

���������������� �� ����$�#C����#��C�$��!���1� O@���O��L;�
������������������L:�
����������������������$�H�&6��'

T�LQ�
������������������LK�
��������������LL�
�L.�
������������ ��������	������&%�$�����������$��� �.��
������������ �� ����$�H�&6��'�=����7�$�*�$H�����.<�
��������������.��
������������������&����$H���H�&�������#H�&�T�.-�
���������������� %$��	 T�� �������������������(�� �� �.;�
��������������.:�
����������.Q�
������.K�
�.L�
������%#I�,������H����#5�����&����$H���H�&��T�..�
�<���
���� ���������&%�$����������������$������%�������������� ��$������������&� �<�<�
������%#E���&�&H�&%�$J�H������<T�<���
������%#E� �&�&H�&%�$J�H������<T�<�-�
������%#E���&�&H�&%�$J�7�$�������7�$�*�$H���T�<�;�
������%#E� �&�&H�&%�$J�7�$�������7�$�*�$H���T�<�:�
�<�Q�
���� ����-��7$��������	 �<�K�
���� @C�������$���	 ����	����%#7$�������	��T�<�L�
�<�.�
�<<��
�<<<�
�<<��
�<<-�

134

���� ����-���P$����������������� �<<;�
���� ��$��! ������R���*����� MOSSO�
�����H���H�&��
� MOS���$�SO �
������R���H�&�T�<<:�
����C'���&#@J# C�$��&P$���$ ������R����� ��� �C'���&#@J# C�$��&P$���$ ������R���*����T�<<Q�
�<<K�
���� �������� �<<L�
���� ��$ �� ��� �����T���=�������7���&�#N��!���4�<T��

��<<.�
������<���
�������������R���#P$����������7���&�����T�<�<�
�������������R���#P$���� U(U�T�<���
������<�-�
���������R���#P$����������7���&��������7���&�#N��!� ��4�<��T�<�;�
���������R���#P$���� UVU�T�<�:�
�<�Q�
���� �������N�������� �<�K�
���� ��$ �� ��� �����T���=������N��������#N��!���4�<T��

��<�L�
������<�.�
�������������R���#P$���������N������������T�<-��
�������������R���#P$���� U(U�T�<-<�
������<-��
���������R���#P$���������N��������������N��������#N ��!���4�<��T�<--�
���������R���#P$���� UVU�T�<-;�
�<-:�
���� �����&���� �<-Q�
���� ��$ �� ��� �����T���=����&����7���&�#N��!���4�<T��

��<-K�
������<-L�
�������������R���#P$�������&����7���&�����T�<-.�
�������������R���#P$���� U(U�T�<;��
������<;<�
���������R���#P$�������&����7���&�����&����7���&�#N ��!���4�<��T�<;��
���������R���#P$���� UVU�T�<;-�
�<;;�
���� ������C�����!(�+(���(���$�� �<;:�
���������R���#P$��������C�����!�T�<;Q�
���������R���#P$���� UVU�T�<;K�
���������R���#P$����+�T�<;L�
���������R���#P$���� UVU�T�<;.�
���������R���#P$�������T�<:��
���������R���#P$���� UVU�T�<:<�
���������R���#P$�����$����$��T�<:��
���������R���#P$���� UVU�T�<:-�
�<:;�
���� ��"�$����� �<::�
���� ��$ �� ��� �����T���=�"�$�����7���&�#N��!���4�<T��

��<:Q�
������<:K�
�������������R���#P$����"�$�����7���&�����T�<:L�
�������������R���#P$���� U(U�T�<:.�
������<Q��
���������R���#P$����"�$�����7���&��"�$�����7���&�#N ��!���4�<��T�<Q<�
���������R���#P$���� UVU�T�<Q��
�<Q-�
���� ���$���!��� �<Q;�
���� ��$ �� ��� �����T���=��$���!���7���&�#N��!���4�<T��

��<Q:�
������<QQ�
�������������R���#P$�����$���!���7���&�����T�<QK�
�������������R���#P$���� U(U�T�<QL�
������<Q.�
���������R���#P$�����$���!���7���&���$���!���7���&� #N��!���4�<��T�<K��
���������R���#P$���� UVU�T�<K<�

135

�<K��
���� ���$���!��67� �<K-�
���� ��$ �� ��� �����T���=��$���!��67�#N��!���4�<T��

��<K;�
������<K:�
�������������R���#P$�����$���!��67�����T�<KQ�
�������������R���#P$���� U(U�T�<KK�
������<KL�
���������R���#P$�����$���!��67���$���!��67�#N��!��� 4�<��T�<K.�
���������R���#P$���� UVU�T�<L��
�<L<�
���� ����$&��� �<L��
���� ��$ �� ��� �����T���=���$&���7���&�#N��!���4�<T��

��<L-�
������<L;�
�������������R���#P$������$&���7���&�����T�<L:�
�������������R���#P$���� U(U�T�<LQ�
������<LK�
���������R���#P$������$&���7���&����$&���7���&�#N�� !���4�<��T�<LL�
�<L.�
���������R���#7������T�<.��
�<.<�
���� 2�����&� ������R���7$������ 2�����&� #H��T�<.��
���� @��Q; ��$���@�������	��� 7��"�$� #��@��Q;������R���7$����#���	��4����$�#���	��T�<.-�
���� ���%�� ��$���@����C�����$���@�������	����<�������#�T�<.;�
�<.:�
���� ����-%��J��%�� �����%�������!�"�������������������� ������������ �<.Q�
���� ����������$	��%���������������&��������� �<.K�
���� ���� Z������$��"���&������$��������$�����$�&�������� ����������&����$� �<.L�
���� ���� %����������������������$��"���&��# �<..�
���� ��������@&��$�������������$������$&�������������$�� ��$�"����$�&�W��������� �����
�������	#7�&&���N����� MOSSO�
�����H���H�&��
� MOS���$�S�����-�#� �O T���<�
�������	#7�&&���N����
� O�O�
������R���*����
� O����"�O T�����
���-�
���� ����-���7$���������������� ���;�
���� ���������$����$��������������������������%����'���& �� ���:�
���� ������������!�����������������������������$���%���� �����&���������������� ���Q�
���� C�$��! �������R���*����� MOSSO�
�����H���H�&��
� MOS���$�SO �
�������R���H�&�T���K�
�������	#C��J��R���*�����������R���*���T�� ������$	�###O ���L�
���.�
�������	#E���&�&H�&%�$J�7�$�������7�$�*�$H���T��<��
�������	#E� �&�&H�&%�$J�7�$�������7�$�*�$H���T��<<�
��<��
���� ����;���������	����������$$������% ��<-�
������%#5�����	����	�T��<;�
��<:�
���� �����"���������������� ��<Q�
������%#J�X�%C�����
� ��� � +"���W�����$ =X�%C����+"���5$! 0���%)J�X�%C�����T��<K�
������%#*$��$��'�� X�%*$��$��' #W�!����T� ������4�;��;��!�(����$&��� ��<L�
��<.�
���� ����:����%&�����%(����$���&������������$���&������ �����
������������$#C�%&��X�%���%(� MOGI5EJNN4H+�<�S���$� O(� O��2R<�B^ O�T���<�
�����
���� ������������������%��������(���%@�2���������������� ����%)J�X�%C������������� ���-�
���� ����� ��1��%@�2�������;�
��������:�
��������C'���&#��$�����!# ��$��� #C�����<���T���Q�
��������K�
���L�
���.�

136

���� 2�����&� ����P������ 2�����&� #H��T��-��
���� @��Q; ���%���	��� 7��"�$� #��@��Q;����P����#���	��4������R���7$����#���	��T��-<�
���� ���%�� ���%C������%���	����<�������#�T��-��
��--�
���� ������������(�$������������������� ��-;�
���� ������������������������������������ ��-:�
��-Q�
���� C�$��& ���� ��� � R���C�$��& �������R���*���(� R���E��� #J����T��-K�
�����#*����������T� ��������������$�������������������&�	����$�� ��-L�
��-.�
���� C�$��&I����$ �$����$�� ��� � C�$��&I����$ ���T��;��
���� C�$��! ����I�������$����$#I�����+����T��� �������'����� ��;<�
����$����$#7������T� �����$�%��&�������$�����!��$�!$�&��!��������������� ������ ��;��
�����#7������T��;-�
��;;�
���� ���$�&�"��������$�&���$"�$ ��;:�
���� R���@��� ������� ��� � R���@��� �������R���*����T��;Q�
��������#2�������T��;K�
��;L�
���� 2�����&� ������ 2�����&� #H��T��;.�
���� @��Q; �����������	��� 7��"�$� #��@��Q;����#���	��4����$�#���	��T��:��
���� ���%�� ��������C��������������	����<�������#�T��:<�
��:��
���� @��Q; �$���J�����	��� 7��"�$� #��@��Q;����#���	��4����P����#���	��T��:-�
���� ���%�� �$���J��C����$���J�����	����<�������#�T��:;�
��::�
�������I������
� OC�$"�$�I�����&���O �
��������C��#��C�$��!� O�-O��
� O��������O T��:Q�
��:K�
���� $���$� ����I�����T��:L�
���:.�
��Q��
��%��� � ��$��! �&���I�&���� ��$��! �$������(� ��� �&���I�����&���(� ���%�� �����Q<�

"�$�����7���&�(� ��� ����$���!���7���&�(� ���%�� �����$&���7���&����Q��
���Q-�
���� 2�����&� ����$��� 2�����&� #H��T��Q;�
��Q:�
���� ���!���$����$����&���$��!(�������$��������&� ��QQ�
���� ��� �����H�&�N��!����QT� ����$����&���$��!����!�� ��QK�
���� ��$��! �)�������7��$�����QL�

O�%����!���	&���,$���"� '35672+RGWXYNEH*AIC�ZDP[\]< �-;:QKL.O T��Q.�
��K��

���� I����& �$���H�&�� ��� � I����& ��T��K<�
���� ���$ ������$��� ��� � ���$ �����H�&�N��!���T��K��
���� ��� ��������7��$7������)�������7��$�#N��!��T��K-�
��K;�
���� ������&�����������$$��������(��#�#�W+52�<��$�YW+52< �� ��K:�
���� C�$��! �����H���H�&��� +�"�$��&��� #E������H�&�T��KQ�
��KK�
���� ��$ �� ��� �����T���=�����H�&�N��!��T��

���KL�
�������K.�
�����������$������)�������7��$��� ��� ���)�������7��$�#N��!����9���L��

$���H�&#H� �2��%������T��L<�
�������L��
��L-�
���� ��$��! �I���C�$��!�� ��� � ��$��! ����$��T��L;�
���� C�$��! ������R���H�&��� O�����-�)@����)O �
�I���C�$��!�
� O#� �O T��L:�
���� C�$��! �������R���H�&��� O�����-�)J�����)O �
�I���C�$��!�
� O#� �O T��LQ�
��LK�

137

��LL�
���� ����<�����������������������������$ ��L.�
���� @C�������$ ���������$�� ��� � C�������$ ��T��.��
������������$#7������� O���������O �T��.<�
��.��
���� �������7$�������% ��.-�
���� @C�������$X�% ���%����������$#7$����X�%��T��.;�
������%#H�&��� O��%�O�
�I���C�$��!T��.:�
��.Q�
���� ����������������	��������������������������$��(���� ���������������������%����.K�
�������������%��	��������� ��.L�
���� ��������������������%�����������&�������'(�%������� �����$��������������������..�
������������� �-���
���� C�$��! ���&����$H���H�&��� OOT�-�<�
���� ��$���� �� @C�������$H��� ������ �� ���������$#G��H���N���� ���� (� ���� ���-���
������-�-�
�-�;�
�������� �� ������#H�&��1�����H���H�&���-�:�
������������� ����������������������������������&��������� �-�Q�
�-�K�
������������ ��� ���$�H�&6��'���T�-�L�
������������ ��$���� �� @C�������$7�$� ���$�� �� �����#G��7�$������-�.�
��������������-<��
�-<<�

�� ����7���	��������$�(��/J������(�</@���(��/6��'(��-<��
������-/2$�����!(�;/$���$"�� �-<-�
�� �������'���%���$�&���������$�&�	�����$��%��'����&&� ������������� �-<;�
����������$�!����$� �-<:�
�� ������������������$�����%��'(�!������� ������ �-<Q�

���������������� �� ����$�#C����#��C�$��!���1� O@���O��-<K�
������������������-<L�
����������������������$�H�&6��'

T�-<.�
������������������-���
��������������-�<�
�-���
������������ ��������	������&%�$�����������$��� �-�-�
������������ �� ����$�H�&6��'�=����7�$�*�$H�����-�;�
��������������-�:�
������������������&����$H���H�&�������#H�&�T�-�Q�
���������������� %$��	 T�� �������������������(�� �� �-�K�
��������������-�L�
����������-�.�
������--��
�--<�
������%#I�,������H����#5�����&����$H���H�&��T��--��
�---�
���� ���������&%�$����������������$������%�������������� ��$������������&� �--;�
������%#E���&�&H�&%�$J�H������<T�--:�
������%#E� �&�&H�&%�$J�H������<T�--Q�
������%#E���&�&H�&%�$J�7�$�������7�$�*�$H���T�--K�
������%#E� �&�&H�&%�$J�7�$�������7�$�*�$H���T�--L�
�--.�
���� ����-��7$��������	 �-;��
���� @C�������$���	 ����	����%#7$�������	��T�-;<�
�-;��
�-;-�
�-;;�
�-;:�

138

���� ����-���P$������������$��!�������� �-;Q�
���� ��$��! ������R���*����� MOSSO�
�����H���H�&��
� MOS���$�SO �
������R���H�&�T�-;K�
����C'���&#@J# C�$��&P$���$ ������R����� ��� �C'���&#@J# C�$��&P$���$ ������R���*����T�-;L�
�-;.�
���� ��$�����������&���I�����&��� �-:��
���������R���#P$����$�������T�-:<�
���������R���#P$���� UVU�T�-:��
���������R���#P$����&���I�����&����T�-:-�
���������R���#P$���� UVU�T�-:;�
�-::�
���� ��"�$����� �-:Q�
���� ��$ �� ��� �����T���=�"�$�����7���&�#N��!���4�<T��

��-:K�
������-:L�
�������������R���#P$����"�$�����7���&�����T�-:.�
�������������R���#P$���� U(U�T�-Q��
������-Q<�
���������R���#P$����"�$�����7���&��"�$�����7���&�#N ��!���4�<��T�-Q��
���������R���#P$���� UVU�T�-Q-�
�-Q;�
���� ���$���!��� �-Q:�
���� ��$ �� ��� �����T���=��$���!���7���&�#N��!���4�<T��

��-QQ�
������-QK�
�������������R���#P$�����$���!���7���&�����T�-QL�
�������������R���#P$���� U(U�T�-Q.�
������-K��
���������R���#P$�����$���!���7���&���$���!���7���&� #N��!���4�<��T�-K<�
���������R���#P$���� UVU�T�-K��
�-K-�
���� ����$&��� �-K;�
���� ��$ �� ��� �����T���=���$&���7���&�#N��!���4�<T��

��-K:�
������-KQ�
�������������R���#P$������$&���7���&�����T�-KK�
�������������R���#P$���� U(U�T�-KL�
������-K.�
���������R���#P$������$&���7���&����$&���7���&�#N�� !���4�<��T�-L��
�-L<�
���������R���#7������T�-L��
�-L-�
���� ����-%��J��%�� �����%�������!�"�������������������� ������������ �-L;�
���� ����������$	��%���������������&��������� �-L:�
���� ���� Z������$��"���&������$��������$�����$�&�������� ����������&����$� �-LQ�
���� ���� %����������������������$��"���&��# �-LK�
���� ��������@&��$�������������$������$&�������������$�� ��$�"����$�&�W��������� �-LL�
�������	#7�&&���N����� MOSSO�
�����H���H�&��
� MOS���$�S�����-�#� �O T�-L.�
�������	#7�&&���N����
� O�O�
������R���*����
� O�&���O T��-.��
�-.<�
���� ����-���7$���������������� �-.��
���� ���������$����$��������������������������%����'���& �� �-.-�
���� ������������!�����������������������������$���%���� �����&���������������� �-.;�
���� C�$��! �������R���*����� MOSSO�
�����H���H�&��
� MOS���$�SO �
�������R���H�&�T�-.:�
�������	#C��J��R���*�����������R���*���T�� ������$	�###O �-.Q�
�-.K�
�������	#E���&�&H�&%�$J�7�$�������7�$�*�$H���T�-.L�
�������	#E� �&�&H�&%�$J�7�$�������7�$�*�$H���T�-..�
�;���
���� ����;���������	����������$$������% �;�<�
������%#5�����	����	�T�;���
�;�-�

139

���� �����"���������������� �;�;�
������%#J�X�%C�����
� ��� � +"���W�����$ =X�%C����+"���5$! 0���%)J�X�%C�����T�;�:�
������%#*$��$��'�� X�%*$��$��' #W�!����T� ������4�;��;��!�(����$&��� �;�Q�
�;�K�
���� ����:����%&�����%(����$���&������������$���&������ �;�L�
������������$#C�%&��X�%���%(� MOGI5EJNN4H+�<�S���$� O(� O��2R<�B^ O�T�;�.�
�;<��
���� ������������������%��������(���%@�2���������������� ����%)J�X�%C������������� �;<<�
���� ����� ��1��%@�2�����;<��
������;<-�
��������C'���&#��$�����!# ��$��� #C�����<���T�;<;�
������;<:�
�;<Q�
���� ������������(�$������������������� �;<K�
���� ������������������������������������ �;<L�
�;<.�
���� C�$��& ���� ��� � R���C�$��& �������R���*���(� R���E��� #J����T�;���
�����#*����������T� ��������������$�������������������&�	����$�� �;�<�
�;���
���� C�$��&I����$ �$����$�� ��� � C�$��&I����$ ���T�;�-�
���� C�$��! ����I�������$����$#I�����+����T��� �������'����� �;�;�
����$����$#7������T� �����$�%��&�������$�����!��$�!$�&��!��������������� ������ �;�:�
�����#7������T�;�Q�
�;�K�
���� ���$�&�"��������$�&���$"�$ �;�L�
���� R���@��� ������� ��� � R���@��� �������R���*����T�;�.�
��������#2�������T�;-��
�;-<�
���� 2�����&� ������ 2�����&� #H��T�;-��
���� @��Q; �����������	��� 7��"�$� #��@��Q;����#���	��4����$�#���	��T�;--�
���� ���%�� ��������C��������������	����<�������#�T�;-;�
�;-:�
�������I������
� OC�$"�$�I�����&���O �
��������C��#��C�$��!� O�-O��
� O��������O T�;-Q�
�;-K�
���� $���$� ����I�����T�;-L�
��;-.�
�;;��
��� �"���������� �;;<�
"��� ���%)J�X�%C����� �%���� ������$(� X�%C����+"���5$! ����;;��
��;;-�
���� �� ���#H��C������ X�%C���� #R��������__��;;;�

��#H��C������ X�%C���� #7��������__��;;:�
��#H��C������ X�%C���� #R�������;;Q�

������;;K�
����������%@�2����� �$�� T�;;L�
������;;.�
��;:��
�;:<�

140

�

