UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ONLINE, INTERACTIVE, 3D FINITE ELEMENT STRESS ANAL®IS USING

HIGH-PERFORMANCE COMPUTING CLUSTER

A THESIS
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirement for the
Degree of

MASTER OF SCIENCE

By

ZACHARY MARK VICK
Norman, Oklahoma
2012

ONLINE, INTERACTIVE, 3D FINITE ELEMENT STRESS ANAL®IS USING
HIGH-PERFORMANCE COMPUTING CLUSTER

A THESIS APPROVED FOR THE
SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING

BY

Dr. Kurt Gramoll, Chair

Dr. Wilson Merchan-Merchan

Dr. Zahed Siddique

© Copyright by ZACHARY MARK VICK 2012
All Rights Reserved.

Acknowledgements

The author would like to thank Dr. Gramoll for hssipport throughout this
project. His knowledge and experience proved umalle not only to the study at hand
but to the general development and benefit of titha. The author would also like to
thank the faculty of the School of Aerospace anahaaical Engineering for everything
they have offered, in particular Dr. Siddique fds lyuidance in both graduate and

undergraduate endeavors and Dr. Merchan-Merchémsaupport and consideration.

Table of Contents

ACKNOWIEAGEMENLS ...t \Y
Table Of CONtENTSo v
LISt Of TADIES ... viii
LISt Of FIQUIES ..ottt e e e e a e e e e e e e e e e e e e iX
ADSIIACT ... e eaa e Xii
R 1 £ {0 o [o1 1o o A PP P TP 1
1.1 Purpose of SAMSONcoooiiiiiiiiiiiiiii ittt e e eaebeseneeenneas 3
1.2 Contributions and accompliShmentscccccveiiiiiiiiieieeeeeeee 8..
2 Operation of SAMSON.......ccoiiiiiiii e 10
2.1 Loading @ geometry fil@uuuuuumimmmmneeeeeeee et 14
2.2 Selecting boundary and loading coNditioNSeueeueeiiimemmmeiiiinnns 15
2.3 Meshing the ODJECT ... 17
2.4 Inputting material properties and solving the Si@ioinccccvvvevinennn. 19
2.5 Interacting With the reSUItSooviiceceee e 19
3 The Finite Element Method Implementation, 24
3.1 Anintroduction to the finite element Methoduuviiiiiiiiiies 24
3.2 FEM theory utilized by SAMSONcoiiiiiiiierieieiieieiiieiveieieeverebeerer e 26
3.2.1 Stress and strain in three dimensSioNSccoouiiiiiiiiiiiiiiiiiiiiiiiiieeeeeenns 26
3.2.2 Element selection, the tetrahedral elementcccov i, 29

4

5

6

3.2.3 Matrix analysis teChNIQUES...........ccoiiiiimieieie 32

Input Geometry Creation and ProCeSSINGccccceeirrrrmeeimmmmiiiiiiiiriieeienenenenennnes 36
4.1 Creation of the CuUSIOM gEOMELIYooiiiiiiieei e 36
4.2 Analyzing the 3D model file ..o ieeee e 38

Meshing IMPIeMENTALIONuiieeeeee ettt eeneee e 45
5.1 An introduction to mesh generationceeceeeeeeeieiiiiieeeeeeee 45
5.2 Ordered mesh generationcouuumeeeeeeeemnnmnmmemmnnnennee—— 49
5.3 2D Delaunay triangulationeeescemmeeevereeeueinnnnnnnennnnninennnennnnnennn—. 59

5.3.1 Incremental 2D Delaunay triangulation by buildihg tonvex hull......... 61

5.3.2 Incremental 2D Delaunay triangulation using a stpangulation........... 73
5.4 Random mesh generationccooooo s ceeeeeeeeeeeeeeieeeeeseeseereeseesnenieeees 82

5.4.1 Analyze the gEOMELIYouiiiiiiiiiieiee et 83

5.4.2 Generate random NOUES............uuuiiiiiiieiemeeee e 38

5.4.3 SOM NOUES. ... e 85

5.4.4 Build super-tetrahedralization..............cooeueuiiiiiiiiiiiiiiii 88

5.4.5 3D Delaunay tetrahedralizationcocccecooooiinin e 89

5.4.6 Remove super-tetrahedralizationccccoeoiiiiiiiiiiiiiiiiiiies 95

Cluster Implementation.......... .. eeeeee et neee e e eees 99
6.1 WeDb/file NOSINGuuuiiiiiiiiiiii e 99

6.1.1 WebhoStingcooooiiiiie e 99

Vi

6.1.2 File NOSING......coo i e 100

6.2 Remote CalCUIAtIONSuuuuiiiiiiiiii i cemmmmm e 101
T RESUIES .. e e ettt ettt ettt e bbb n e e e e e e e e e e e e eaaaeaas 107
7.1 CompariSON t0 thEOIYt e 107
7.2 MeShING FUNTIMESoeiiiiiiiiiiieiie ettt ettt e e e eeeeeeeeeeeas 108
7.3 SOIVING FUNTIMES ...oviiiiiiiiiieiieiieietees s e eeeeeeseeaeeaeeseesssssssensssnsssssnnnnnneees 110
7.4 Comparison to other FEM software packagescccc.eevvvviiiiiiiiiviiiiiennnnne 113
S I o] o Tex 111 o] o HO PP PP 117
8.1 Contributions and accompliShMENLSuuuuiueriiiiiiiiiiiiii. 118
8.2 Future development ..o s 119
O RETEIBNCES ..ottt ettt et e ettt e e e e amnn e e e e 121
10 APPENAICES ...coiiiiiiiiiiiiieeeee ettt e e e e e e e r e e e e e e e e e e e e e e seeeeaa i nnnnnnan 125
10.1 Appendix A: Finding the closest point on a triangl8Dc.cccceeunnn 125
10.1.1 Mathematical formulation..............ooii e 125
10.1.2 IMPIEMENTALION L..uvuiiiiiiiiiiiiiiiiinieiee e e e e e e e e e eeeeaeeeeeeeeeeeeeeeeeeeeeesees 128
10.2 Appendix B: JOb control programoooememiiii e 132

vii

List of Tables

Table 4.1: COLLADA vertex information ... 43
Table 4.2: COLLADA triangle informationcc.eeveviiiiiiiiiiiiiiiiiiieeiivieeieeeeeeeeeens 43
Table 4.3: Obtained vertex iNformation..............ooooiiiiiiiiiiee e 44
Table 4.4: Obtained triangle iINformMation......cccccoovieiiiiieeeeee 44
Table 5.1: Five positive volume tetrahedra..eeveeeiviiiiiiiiiiiiiiiiiiiiiieeeeeeee e 53
Table 5.2: Six positive volume tetraN@ara .. cucuuee oooeeeeiiiiinieee i 54
Table 7.1: Local vs. remote runtimes for ordere@miggevvvvvevvvevnveninnnn. 108
Table 7.2: Programming language runtimes for oleneshingcccccoeeeeveieeeeennn. 109
Table 7.3: Local vs. remote runtimes for FEM solR@Itine...............cooeviviiiiiiiiininnnnns 111
Table 7.4: Remote runtimes varying the number o8€0..................c. 112

viii

List of Figures

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

SAMSON ProCess Mapc.uuuueemmmemiiiieeeiiiiiie et eeeeeeeeeeees 2
Sample problem descCription ... 11
Tool interface with loaded geometry ..., 13
Geometry with selected boundary COOO8i................ccooeviiiiiiiiiiinininnnm 16
Geometry with coarse ordered mesh...........ccccccoiee, 18
Deformed mesh, deformation scaled B)..10..............covvvveviiiiiniiinininnnn. 20
Von Mises elemental StreSS StAteS ceeeevvvvveeeiiiiiiiiiiiiiiee e eeeeee s 22
3D Stresses 0N an ElEMENT.....ccoceeeeiiiiieeee e ereeee e 26
General solid tetrahedral eleMeN 29
Sample full global StiffNessccccariiiiiiiiiiiiiiii e 33
Global stiffness upper band stored i@Engular array............coceeeeeeeenn 4.3
FEM PrOCESS MEAP ...ciiieiiiiiiiieeeiietiiae e e e e e eeetit e e e e e e eeeeeni s seeeeaeeeeaeennnes 35
Custom geometry created using GoogicBIF®cccvvvvvviveeieene, 37
Quality of tetrahedral elements oo 46
Signed volume convention®f= { P, Px, P, Pm} oo 49
Extruded ellipse from Google SketchUp...............cc e, 50
Constructed and discretized boundingfboextruded ellipse 50
Testing for point location in relatitman arbitrary geometry 51
Division of a rectangular prism inteditetrahedra.............ccccvvvvviiriinne. 53
Division of a rectangular prism intg ®trahedra...........cccccccvvvvvvvvvnennnn. 54
Repeating orientation of five tetraleedsctangular prismsc...ooe. 55
Repeating orientation of six tetrahg@angular prisms...........cccccvvvvvennns 56

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:
Figure 5.29:
Figure 5.30:
Figure 5.31:

Figure 5.32:

Three geometries meshed with the eddereshing routine....................... 57
Ordered Meshing PrOCESS MAP . srnsssasseasaeasssassaeeesaeeeeeseeseenees D8
Delaunay triangulation with circumEgShownccccocevviiiiiiiiiinennnn, Q.6
CoNVEX NUITIN 2D .. 61
Adding a pointto a 2D convex hull.............c.cooei e, 63
Incremental method for finding conve from kernel ..., 63
200 random points in they) planecovvviiiiiiiiiiiiiieeee s e 65
200 random points lifted iNt0 3D....cc.ooeeeeieiiiiiiieeeeen 65
Adding one point to a tetrahedral REIN............ovvvviiiiiiiiiiiiiiiiieeeee 67
Lower convex hull of 200 random POLALS.............eeveereereeeieeerieeiieninans 70
Delaunay triangulation for 200 rand@omts...........ccooeeieiiieieeereeeeeeeeeee 71
Super-triangulations for 7 random [BIN...........eeeueeiiiiiiiiiiiiiieiiieineenes 74
Adding a point to an existing triaraidnccccooeorienneneneneneneeeeoees 75
Delaunay triangulation of 7 randomnmp®ivith super-triangulation 78
Removal of the super-triangulation................c.oevviiiiiiiiiiiiiiiiiiieeeeen. 78
1000 random POINTScooees e 79
Super-triangulation of 2000 randoNMEBi.........eueereiiiiiareeree e eeeeesee s 79
Delaunay triangulation of randandsuper-triangulation points 80
Final Delaunay triangulation of 10@0adom pointS...............eeevevieiniinninnnn. 80
Surface (blue) and interior (greergesogenerated randomly 85
Super-tetrahedralizations for 7 ran@@intsuevvveeivenininini. 388
Super-tetrahedralization for cube gatoyn.............oooeeiviiiiiiieee, 89
Delaunay tetrahedralization with stipénahedralization....................uvuee. 94

Figure 5.33: Removal of the super-tetrahedralizatio..................ococviiiiiiiiiiiiiiicenes 95

Figure 5.34: Two geometries meshed with the randashing routine........................ 97
Figure 5.35: Random meshing ProCeSS MAP ...eceeeeeerrrrrrrrmrrmmemmmmmmnnnnnnnnnnnnnnsnnnnnnns 98
Figure 6.1: HPC cluster utilization proCess Map.......ccccoeveeeeeiieieeiieeeeeeeeeeeeeee e 105
Figure 7.1: SAMSON results compared t0 theory......ccoeeeeeeiiiiiiiiieeeeeeeee, 107
Figure 7.2: Ordered meshing runtimes vs. numbgeotrated nodes 110
Figure 7.3: Remote runtime vs. number of coreF8963 DOF ..o, 112
Figure 7.4: SAMSON results compared to theory fsé wood beam 114

Figure 7.5: SolidWorks Simulation results compaxetheory for balsa wood beam .. 114
Figure 7.6: SolidWorks Simulation and SAMSON comesrce (~19nodes).............. 115
Figure 7.7: SolidWorks Simulation and SAMSON comestce (~10nodes).............. 115

Figure 7.8: SolidWorks Simulation and SAMSON comesrce (~ 4x1bnodes)........ 116

Figure 10.1: Point and triangle in 3D........cccooriiiiii e 125
Figure 10.2: Boundary regions of a triangle in 3D.........cccooooiiiiiiiiiin e 126
Figure 10.3: Level curves QI(S, 1).....cooerr it 127
Figure 10.4: Three cases for level curve with ceimt&egion 2 ... 712

Xi

Abstract

The use of a remote, high-performance computingQH®&uster in solving 3D
finite element method (FEM) problems for enginegrapplications was investigated. An
online, interactive engineering tool referred toMBPON (Solid Analysis Meshing and
Solving ONIline), was developed to explore the poétnfor remote versus local
computing of complex geometry stress analysis ubiall. In SAMSON, 3D models in
a COLLADA (COLLAborative Design Activity) (.DAE) file format can be loaded from
the local machine or from a pre-designed geometmady. SAMSON volumetrically
meshes the geometry using tetrahedral elementsuseiadefined level of refinement.
Loads and boundary conditions are then applieti¢ariodel, and the program solves for

nodal displacements, elemental stresses, and daihsémains.

It was found that the use of SAMSON has many adged in engineering
applications to traditional, locally installed FERbftware packages. SAMSON is
accessible from any machine with internet acceds@quires no cost to use. This allows
SAMSON to be accessed from field or remote locatiovith internet access. In
engineering education, the webpage-based natUB&NBISON allows it to be integrated
seamlessly into the course material for a basichengics of materials class. Namely, it
has been included as part of the electronic bododk) Multimedia Engineering

Mechanics of Materiafsfor use in demonstrating 3D elasticity and stfids.

The utilization of a remote HPC cluster in solviegpmputationally intensive
problems was found to have numerous advantagesabdomputation. The HPC cluster

has much greater computing power than most persoaahines, greatly reducing the

Xii

computational time as compared to local calculatiorthis case, the computational time
no longer depends on the processing power of tb& lmachine as the most complex
calculations are performed remotely. This openghgppossibility of performing FEM
simulations with many degrees of freedom from Ipssverful hardware, including
laptops, tablets, and smartphones. The only remeinés become internet accessibility

and hardware support of Flash Player.

The major limitations of SAMSON were found to be time required to transfer data
between components on the remote server and lacgeaises in computation time when
problems were too large to be completely solvedgighe HPC cluster’s local memory.
It was found that for most cases, the transfer timand from the remote server was
negligible when compared to data transfer betwegpliGations on the server, data
parsing, and string manipulation. All cluster congtions were done on a 32 node, 382
cell cluster (Intel CPUs running under windows 2@8BC Server R2 system) at the
University of Oklahoma dedicated to engineeringoadion. All simulations are internet-

based, and are freely open to others to utilizbeit institutions.

Xiii

1 Introduction

This thesis presents the research completed tolagevan online, interactive
engineering tool referred to as SAMSON (Solid As&yMeshing and Solving ONline).
SAMSON utilizes a remote high-performance compuidgC) cluster to perform finite
element method (FEM) analysis on complex geometr@&MSON consists of a
webpage-based interface run in Flash Player andcenaote back-end capable of
performing complex calculations utilizing parallpfocessing techniques on a HPC
cluster. 3D geometry files can be generated usaeBD modeling software (e.g. Google
SketchUp and Blender) and imported into SAMSON. SN volumetrically meshes
the imported geometry using tetrahedral element tiser defined level of refinement.
Loads and boundary conditions are then appliechéoREM model, and the program
solves for nodal displacements, elemental straind, elemental stresses. When solving
the simulation, SAMSON allows the user to run tlesiced calculations locally, using a
personal machine’s central processing unit (CPW) memory, or remotely, using the
HPC cluster’'s multiple CPUs and greater memory.ofnplete picture of SAMSON'’s

processes is provided in Figure 1.1.

19)SN|D/|e207
sanads 19sn

uoneINWIS A0S

sojuadoid
leusdjey

"U93I9s Ay}

0} J9PUJ PUE |eg—

109[qo pjing

Aijowoeg

ndu LYVLS

s|ewuou 9|buey) ‘¢

sao11an 9|buew) 'z

SUOIIBOO| X3)JaNA |
Aowoab Jndul asied

Figure 1.1: SAMSON Process Map

This thesis details the research performed insgkeats of SAMSON'’s development.
Namely, this thesis will first give a broad ovemwido the purpose and operation of
SAMSON in Chapter 1: Introduction and Chapter 2efagon of SAMSON. Then, the
FEM techniques and theory used to solve simulatrafide presented in Chapter 3: The
Finite Element Method Implementation. The creaton processing of 3D models from
free 3D modeling software will be discussed in Gheg: Input Geometry Creation and
Processing. The techniques for generating a 3@hetiral mesh will be presented in
Chapter 5: Meshing Implementation. The remote cdmguand parallel processing
techniqgues implemented in SAMSON will be detailed Chapter 6: Cluster
Implementation, and finally, results from SAMSONIwbe compared to theory and

another FEM software package in Chapter 7: Results.

1.1 Purpose of SAMSON

The finite element method has become an incregspambular numerical method for
solving problems in solid mechanics, fluid mechaniheat transfer, and other
engineering fields. In both the professional anddamic realms, the vast majority of
FEM simulations are performed using costly, locafistalled software (e.g. ANSYS) or
equally expensive finite element modeling packdgesdled with computer aided design
(CAD) programs (e.g. SolidWorks Simulation and EMGINEER Mechanica). FEM
can be computationally intensive and time consumingnany cases, FEM simulations
require minutes, hours, or even days to performgusinese locally installed software
packages. However, with the growing popularity @afrgdlel processing and remote

computing, these long wait times may soon be alpnolof the past.

Parallel processing using a HPC cluster has thenpiat to dramatically reduce the
computation time required to solve a FEM problemalipwing greater computational
resources to be applied to the simulation. Remaotepeiting allows the user to access the
power of a HPC cluster from any location. This mog@lready being used by tools such
as WolframAlpha, an answer-engine developed by kolfResearch that can remotely
access a HPC cluster of 10,000 CPUs to solve compithematical problems from a
webpagé'. A tool able to perform complex FEM simulationsngsparallel processing
and remote computing would have many advantagelBoth academics and in the
professional world. Substantial steps towards theal have been made in the
development of SAMSON. Parallel processing and tencomputing techniques were

major components of the research to develop SAMSON.

One major application of SAMSON is its use in eregrnng education. Almost
without exception, basic undergraduate aerospacd mrechanical engineering
curriculum includes coursework in mechanics of make (i.e. solid mechanics or
strength of materials). The concepts of stresajrstand deformation are fundamental in
a student’s ability to design, improve, and/or poedailure conditions for mechanical
systems. Traditionally, a solid mechanics clasethices these concepts as applied to
extremely fundamental cases. For example, mossedagresent beam theory to predict
bending stress, shear stress, and deflection @nalevered or simply supported beam
when subjected to idealized loading scenarios. 1&ityj students will learn to determine
the principal stresses from a provided stress statecompare these values to simple
failure criteria. Due to the mathematical compliesitof analyzing or transforming the

3D stress tensor, almost all examples seen bymsisidee 2D approximations.

The average engineering student may completetacbrgse in solid mechanics with
little conceptual understanding of a practical, 8fss state and how that stress state is a
direct result of loading seen on a mechanical systgnfortunately, a student’s only
visualization of stress and strain may be a Molditgle diagram. Providing interactive
media which allows the student to visualize strefgin, and deformation is one means
to facilitate comprehension. By imposing the regonent that such media be interactive
and widely accessible, and by noticing that theraye university student is almost
continuously using portable electronic devices. @reartphones, tablets, laptops, etc.), a
webpage-based engineering tool represents one wsbwiehicle to encourage student

utilization of the media.

Electronic media has become extremely popular igireering education where
complex and abstract mathematical models can neostfbctively visualized through the
use of interactive media such as animations, geaphind simulatiofisAs a result, many
educators incorporate electronic media in theichesy. An increasingly popular form of
electronic, internet-based media is the eBook. HeB®ook refers to an electronic book
consisting of text, images, and other interactivedia, specificallynot a scanned or
digitally reproduced copy of a print textbook. Tinenefits of an eBook as the primary or
supplemental text for education are numerous. Oapmadvantage of an eBook over
traditional print material is that interactive madian be easily and cleanly incorporated
with the content to be accessed by students asmaterial is presented. Interactive
eBooks enable engineering educators to presentseoumaterials, concepts, and
comprehensive visualizations to students in a cdimgemanner that can enhance

educatiofl. eBooks for many engineering courses are now Igeadiailable for use

online, including Statics Dynamic§, Thermodynamic<’, Solid Mechanic and Fluid
Mechanic8. Additionally, thanks to the work of Morafe¥ and others, eBooks may soon
be easily accessible from a variety of devicesuiticlg PCs, laptops, tablets, and mobile
devices. Morales has been working to develop arokBtatform for multiple electronic
devices (including handheld devices)nd has discussed the effects of online eBook

publishing on the textbook publishing indusftry

It was desired to include a robust, FEM stressyaiktool (SAMSON) within the
appropriate content of a solid mechanics eBookviBirmg such a tool serves to enhance
education through various functions. First, SAMSQ@MNows students to visualize
deflections and stress fields as applied to 3D amapts. Secondly, SAMSON serves to
introduce students to the basic concepts of thiefielement method and forces the
student to recognize all of the major steps takerthe FEM process namelypre-
processing (discretization of the volume, application of bdany conditions and
loading), processing (solving the simulation for nodal displacementapd post-

processingcalculation of stress and strain from displacetsien

In the professional environment, SAMSON repressulstantial progress towards an
alternative to expensive, locally installed FEM keges. For many companies, instead of
purchasing a license for a FEM software packaggethould be an economic advantage
in purchasing calculation time from a HPC clustesviler. The HPC cluster provider
could allow remote access to their cluster whergngu parallel processing, FEM
simulations could be run more quickly and efficlgnBy making this service available
online through a webpage, a client could obtairhiggality FEM results without any

overhead cost. Considering economies of scale;lB@ cluster provider could then offer

this service more cheaply than the cost of a i@tht FEM analysis package. SAMSON

represents a concept design proving the feasilaifithis model.

SAMSON is currently hosted on University of Oklaleservers and has been made
available to use freely by anyone with an inteeinection. The tool is browser based
and requires no program installation other tharsti-Rlayer. This makes the tool easily
accessible to educators wishing to demonstrateneagng concepts and prompt in-class
discussion of course material. Furthermore, it gistidents and professionals access to
the tool from any location. Many universities pmbistudents with access to locally
installed FEM packages through university managedputers. However, SAMSON can
be utilized from almost any machine, personal dilipuThe available option to perform
all calculations on a remote HPC cluster allowss Ipswerful devices to act as an
interface for setting boundary conditions and vieyresults without performing the

computationally intensive calculations locally.

Several free FEM applications have been createtienpast, but there is a lack of
web-based FEM tools created using Flash or HTMLBEM tools integrated into course
material readily accessible to students. Therenareerous free, open source FEM post-
and pre-processors available for download andlinstawever, these examples require a
local installation of the software and do not aglia remote HPC cluster. Examples
include CalculiX?, 788 Aurord®>, and Object Oriented Finite Element Solver
(OOFEM)™. The requirement of a local software install Isnihe use of these programs
to Windows or Linux based machines with enough lloagamputational power to
complete the required calculations. Dhondt andigvithve provided a free online demo

of their FEM program CalculiX at http://www.onlirefsolver.com/demo.php However

this is just an online demo of a program that wagen to be locally installed (freely) on
a Linux machine. A full version of the Windows egalent can be purchased under the

name bConvergéd

1.2 Contributions and accomplishments

In the development of SAMSON, an engineering toalsvbuilt that successfully
integrates 3D mesh generation, FEM analysis, antbte parallel processing into an
easily accessible, webpage-based application withinduitive user interface. Key
accomplishments of this work include: developinghods to access FEM simulations
through a webpage, creating a user friendly inpodute (webpage-based graphical user
interface) allowing the user to define geometry aodndary conditions, developing an
automated job control system for web access tadgh®te cluster, developing efficient
parallel processing methods for performing the imeglucalculations, writing original
algorithms for both 3D meshing and FEM analysistirsg guidelines for efficient core
utilization, and building the infrastructure to amtatically display results to the user’s
webpage. While clusters are not new, they geneaatiyused in batch mode where input
programs are submitted through specialized t8ohis method is not conducive for use
by the average engineer who lacks a strong comguatence background. Thus, a new
method to interface with a HPC cluster was develof@AMSON is designed for
engineering students, instructors, and professiwaital no experience in cluster parallel

computing or the finite element method.

SAMSON proves the feasibility of performing complEEM simulations efficiently
by accessing remote a HPC cluster from a webpafBIS®ON appears to be the first

online FEM tool that utilizes a remote cluster, @AMSON works with geometries

created by robust, free, and widely available 3Ddeters. SAMSON was cleanly
incorporated into the course material for a basecmanics of materials class and has the
potential to facilitate student understanding of @Bsticity and stress states. SAMSON
was found to provide accurate results (see Cha@ptResults) and is capable of solving
extremely large FEM simulations in a short amodurtiroe. Finally, SAMSON is free to
access by anyone, anywhere in the world, even fpwrable devices such as

smartphones, laptops, and tablets.

It is also interesting to note that the authorhog thesis had no knowledge of remote
or parallel processing, FEM techniques or FEM imatation, 3D mesh generation, or
3D modeling prior to the development of SAMSON. Tdwghor had no experience in
application development or creating a graphical userface, and the author had never
programmed in ActionScript, C#, or C++ prior to lding SAMSON. SAMSON was
built completely from scratch in the Engineering dNée Lab at the University of
Oklahoma, and developing SAMSON to usable statas ititegrated the HPC cluster
required approximately six to eight months. Thidukles the time required for the author
to become familiar with developing Flash tools,rfeghe required FEM theory and
implementation methods, learn 3D meshing technigaesl develop remote parallel

processing procedures.

2 Operation of SAMSON

In order to illustrate the operation of SAMSON,im@le problem will be analyzed
for deflection using traditional beam theory andhpared to results from SAMSON. The
operation and available user functions of SAMSONI Wwe discussed as a sample
simulation is presented. This will illustrate themy steps and operation needed to set up
and solve the problem. The operation of SAMSONIlmasummarized in five steps. Each

step will be discussed in turn.

1. Loading a geometry file:load a user defined geometry or select a geometry
from the geometry library (Section 2.1)

2. Selecting boundary and loading conditionsselect face(s) which will have
no displacement and face(s) which will have a umfpressure (Section 2.2)

3. Meshing the object: build a FEM model composed of tetrahedral elements
based on the geometry loaded by the user (Sect®n 2

4. Inputting material properties and solving the simuhtion: provide required
constants and solve the system of equations fqlatisments and stresses
(Section 2.4)

5. Interacting with the results: view the results as displayed by SAMSON

(Section 2.5)

The example problem is given as follows. A 20 fadowooden beam (Young’s
modulus 1,300 ksi, Poisson’s ratio 0.33) with atlby 1 ft square cross-section is

cantilevered on one end. A uniform load of 50 Igftlistributed across the length of the

10

beam for a total of 1000 Ibs. The results from SADMSare compared to beam theory in

Chapter 7: Results. The sample problem is shoviigare 2.1.

Figure 2.1: Sample problem description

According to basic beam theory, it can be shown tha deflectiony, at any x-
distance from the fixed end is a function of orilg beam lengtHh,, the distributed load,

w, the material stiffnes&, and the cross-sectional moment of inettia,

_ (2.1)

For this particular problem, Equation 2.1 becomes

(2.2)

where x and v are both in inches. The result obtained in Equaa2 is purely a

mathematical expression for the deflection at evpont in the beam based on
elementary beam bending theory. In order to betisualize the deformation and
resulting stresses, the same problem can be adabgiag SAMSON. After presenting
the sample simulation, this thesis will continuedttail the theory used during each of

SAMSON'’s processes.

At this point, the author would like to emphasizeatt SAMSON is still under
development. Currently, there are many limitatietmghe use of SAMSON. However,

great strides have been made in order to proghessobl to this level of refinement.

11

SAMSON was created using the Flash programminguiageg, ActionScript, because of
its advantages in creating a graphical user interfahe compiled form of a Flash project
is easily embedded into a webpage, ensuring widaspaccessibility. Flash also allows
access to remote scripts and third party medisese@lowing a compiled executable to
be easily accessed on the HPC cluster. One distaya of ActionScript is that Flash
Player imposes a timeout restraint disallowing kwoal calculations taking longer than
60 seconds to perform. (Note that in most caseashFIPlayer will disallow any

calculations requiring more than 15 seconds tooperf Compiler options can be
changed to lengthen this time to a maximum of 6fbisds.) However, the use of the
HPC cluster bypasses this timeout restraint becaossingle script inside the Flash

application is running while waiting for result®in the cluster.

To access the tool, the user merely needs to operdisect a webpage to the solid
mechanics eBook accessible from eCourses.ou.edd.midchanics eBookKultimedia
Engineering Mechanics of MateriaShapter 1: Stress and Strain contains a link ¢o th
engineering tool in the section covering 3D HooKeas’. The tool can also be accessed
directly at http://ecluster.ou.edu/apps/solid3cddétaspx. Once the tool appears in the

webpage (see Figure 2.2), the user controls aetddat the top of the window.

12

Figure 2.2: Tool interface with loaded geometry

13

2.1 Loading a geometry file

The user can choose to upload a geometry file fteariocal machine or download a
pre-created file from the geometry library. Fig@€ depicts the tool interface once a
geometry has been selected and loaded. The piabbjedt is a 20 ft beam with a 1 ft by
1 ft square cross-section. The geometry was creadedwy the free version of Google
SketchUp and has been made available in the geprtibtary, a pull down menu

containing various pre-created geometry files.

Upon loading the geometry, the program reportsdbgct domain to the user in
order to verify that the correct dimensions haverbaded. This is done primarily for
unit conversion purposes. Currently, the userspoasible for keeping track of all units.
As can be seen in Figure 2.2, the object domaim ithe unit of inches. Note the
Papervision3D library was used for 3D renderingppses. Papervision3D is an open
source real time 3D engine for Flash Player that developed primarily for Flash-based
online games. As a result, all 3D rendering is dion left-handed coordinate system as

is default in the Papervision3D library and martyeot3D gaming engin&s

14

2.2 Selecting boundary and loading conditions

Once the geometry is loaded, the user is ableléztsany faces which are fixed and
any faces which have a uniform pressure appliethém. Fixed faces are fixed in all
three directions including all nodes on the selbéaee(s). This was done to facilitate the
development of SAMSON. The option to only fix séégtfaces in one or two directions
can be added as SAMSON is developed further. Laaglsipplied as a uniform pressure
to faces. The user only needs to input the pressttieg on the loaded face(s). The tool
will calculate the loaded area and apply forcesddes as required to approximate the
uniform pressure acting on the selected face(d)pmissures act normal to the selected
surface with positive values acting away from tlgeot interior. This too was done to
facilitate the development of SAMSON. The optiorafiply loads that are not normal to
a face and the option to apply a point load carattded as SAMSON is developed

further.

The user is able to select faces by clicking omth8AMSON allows the user to
interact with the object using the mouse similarotber 3D modeling programs with
options to rotate the object about the origin, flenobject, and change the camera zoom.
The user is able to select multiple faces which fased or which are loaded. Faces
selected to have no displacement will be highlightered. Faces subjected to loading
will be highlighted in green. In the case of thenpée problem, one end face was selected
to have no displacement and the top face was sdl¢gthave a uniform pressure acting
on it. The pressure was set to 0.34722 psi (equaDO0 Ibs acting over 240 in by 12 in
surface). The geometry from Figure 2.2 with therappate boundary conditions and

loading value is shown in Figure 2.3. (Note th84022 psi equals 0.00034722 ksi.)

15

Figure 2.3: Geometry with selected boundary coondi

16

2.3 Meshing the object

After selecting the fixed and loaded faces, the usest then specify a level of mesh
refinement and generate a mesh for the objectusbe can chose to generate an ordered
or random mesh depending on the geometry. In gentr@ ordered mesh is more
efficient for rectangular objects such as beamdates. The random mesh is more suited
for irregular geometries. The ordered and randorshing routines will be discussed in
detail in Chapter 5: Meshing Implementation. Therumay choose to run the meshing
routine on the local machine or using the HPC elusBenerating a random mesh for
high mesh refinements often requires using the ldR6ter due to the local 60 second
time restraint imposed by Flash Player. Similayenerating a mesh on complex

geometries will also require using the HPC cluster.

Once the mesh is generated, a series of view aptidlhbecome available to the user
so that the mesh can be inspected. The user caseho view any combination of the
surface mesh, original object, and the generate&hlnocations. This allows students,
educators, and professionals using SAMSON to irtsffex mesh. In education, these
options can be used to demonstrate the importain@edoprompt discussion over quality
mesh generation. If the mesh is not satisfactotizéauser, the user can then re-generate a
mesh with a higher or lower level of refinementgenerate a completely new random
mesh of the same mesh refinement. SAMSON will dugssential information to the
user including the number of nodes and elementsedisas the total model volume. In
the case of the sample simulation, a relativelyrsmaordered mesh was generated as

pictured in Figure 2.4.

17

Figure 2.4: Geometry with coarse ordered mesh

18

2.4 Inputting material properties and solving the simuktion

The user will be prompted to input the materidfrséiss, Poisson’s ratio, and loading
pressure (as force per unit area). Once this irdtion is entered, the simulation can be
run. The user can choose to solve the simulaticallipor using the HPC cluster. It will
often be required to use the cluster for any sitmarlacontaining more than a few
thousand degrees of freedom as this cannot bedstdeally within the 60 second time

limit imposed by Flash Player.

In the case of the sample problem, the stiffness set to 1,300 ksi. The Poisson’s
ratio was set to 0.33, and the uniform pressure seago -3.4722 10* ksi, signifying
that the load is directed towards the beam. The KaiMulation was then run, finding

displacements at every nodal location and the el&hstrains and stresses.

2.5 Interacting with the results

Once the simulation has been solved, various optwiti become available to view
and interact with the results. The user can choo@sgew the original object geometry,
the deformed surface mesh, the elemental stressdisei x, y, and z-directions, the
elemental von Mises stress invariant, and the acgal nodal locations scaled by a two
orders of magnitude. The user can select any catibmof these options to display in

the view field.

By default, the deformed surface mesh will be digetl on top of the original
geometry. The deformed beam shape in the caskeotdmple problem is shown in
Figure 2.5. The deformation has been scaled bydwers of magnitude to make the

deflection more visible to the user.

19

Figure 2.5: Deformed mesh, deformation scaled 8 10

20

Figure 2.5 illustrates how viewing deformation bétoriginal object geometry can
help students to identify locations of high stresscentration. Deformations of simple
geometries such as beams can be compared to thadrgiscrepancies can be useful

sources of class discussion.

Figure 2.6 shows the elemental von Mises stressas at the fixed boundary of the
beam from the sample simulation. Note that eacbredl|point represents the stress seen
in a tetrahedral element. Each tetrahedral is ateafrstrain, constant-stress element.
Each colored point is placed at the centroid ofeleenent it represents the most accurate
stress location available instead of extrapolagfgmental stresses to nodal locations.
Figure 2.6 shows the von Mises stress state seesacéh element, which appear as
expected. The areas of high stress can be easiipared to a recognizable color scale
ranging linearly from green to red. This allowsdsnts to visualize how stress varies in
all three dimensions as opposed to only surfa@ssts generally shown in many FEM
software packages. In Figure 2.6, high stress curatéons have been identified at the
upper and lower surfaces where beam bending hasdlhese surfaces in tension and

compression respectively.

21

Figure 2.6: Von Mises elemental stress states

22

Once the simulation has been solved, the useléstalsave the results in the form of
a text file to the local machine. The savable tssiniclude the original node locations
created by the meshing routing, the tetrahedrahehts (nodal connectivity) represented
by four nodes, the nodal displacements correspgridirrach node, the elemental strains
and stresses (both normal and shear), and the \&esMtress invariant. The text file had
been arranged so that it can be easily delimitetlimaported into standard spreadsheet

software.

23

3 The Finite Element Method Implementation

Now that the basic operation of SAMSON has beerudised, a more detailed
discussion of the tool's operations will be presentFirst, the FEM techniques used to
solve for displacements, stresses, and strainsbeiltletailed in Chapter 3: The Finite
Element Method Implementation. The FEM techniquissussed will assume that the
input geometry has already been loaded and disetktinto elements, or meshed.
Loading the geometry 3D models will be discussedCimapter 4: Input Geometry
Creation and Processing. Meshing processes witlibaissed in more detail in a later
Chapter 5: Meshing Implementation. How SAMSON asessthe HPC cluster will be

presented in Chapter 6: Cluster Implementation.

3.1 An introduction to the finite element method

The finite element method is a numerical techniqudinding approximate solutions
to engineering and mathematical physics problenidM ks typically used to analyze
structural response to loading, heat transfer,dfldlow, mass transport, and
electromagnetic potentfdl Historically, these problems have been solvedytnally
using ordinary or partial differential equations.owkver, for problems involving
complicated geometries, loadings, boundary conuti@nd/or material properties, it is
generally not possible or extremely difficult totaim analytical mathematical solutions.
As a result, scientist and engineers often relynamerical techniques, such as the finite
element method, for acceptable solutions. Zienldewiraylor, and Zhit generalized

FEM elegantly as

24

The limitations of the human mind are such thataiinot grasp the behavior
of its complex surroundings and creations in onerapon. Thus the process of
subdividing all systems into their individual compats or ‘elements’, whose
behavior is readily understood and then rebuildihg original system from such
components to study its behavior is a natural waywhich the engineer, the

scientist, or even the economists proceeds.

The finite element formulation results in a syst@h simultaneous algebraic
equations for solution, rather than requiring th®utson of differential equations.
However, FEM yields approximate results at a digcneumber of locations in the
continuum. This process of modeling a body by digdt into an equivalent system of
elements interconnected at nodal points commonwm @r more elements is often
referred to as discretization. Thus, in FEM, indte& solving the problem for the entire
body in one operation, one formulates the equationsach finite element and combines
them to obtain a global solution for the whole bodjth the advent of digital computers,
problems involving the discretization of continuaugdia can be readily solved, even

with a large numbers of elements.

The use of finite elements in structural applicagi®oegan with the pioneering work
of Hrenikoff (1941), McHenry (1943), and Newmark94B) in so-calledstructural
analogue substitutidn. In this method, a lattice of line elements iscigeapproximate a
continuous solid and is solved for stresses seeach element. Since this time, FEM has
continued to mature with increasingly complex, d@lements capable of having many
degrees of freedom. Stress analysis in 3D is oftguired for bodies or structures that

require more precise analysis than is possibleutita?D or axisymmetric analysfs

25

Examples include thick-wall pressure vessels, ®dith asymmetric loading or a
combination of loading in multiple directions, amponents with complex, asymmetric
geometries. In the case of SAMSON, FEM was useatédict deformation, strain, and

stress seen in solid, linear elastic, isotropicemak objects.

3.2 FEM theory utilized by SAMSON
3.2.1 Stress and strain in three dimensions

Consider an infinitesimal 3D element with dimensidr, dy, anddzin the Cartesian
coordinate system. The element is subjected tongrge 3D stress state as shown in

Figure 3.1.

y, Vv

Z, W

Figure 3.1: 3D Stresses on an element

26

By definition, normal stresses are perpendiculaghé&faces of the element and shear
stresses act in the planes of the element facem@lstresses are denoted aand shear
stresses are denoted agrom moment equilibrium of the element, it canshewn that

that there are only three independent shear sgredseg with the three normal stresées

" "l "# #" I# #! (31)

Displacements in the X, y, and z-directions areothh asu, v, andw respectively. The

elemental normal strains, are obtained from the displacememts, andw™.

%! % %
b % $ % $ %! (3.2)
And the engineering shear strainsare defined as follow
%¢ % % % % %
o o M)i % % Je Du % %)w (3:3)

A stress state and its corresponding strain steetheen second order tensors and are

often presented in their tensor foffhs

1§) wt

B (-
Koo ey S P O P (3.4)
woow Tty ; .

) I ;

Here, stress and strain are not unrelated. In temstation, the stress and strain tensors

are related by the material stiffness, a fourtreotdnsor commonly denoted @&,

+5 Tseedsc (3.5)

27

In general anisotropic materials, the materialfretds tensor can have up to 81
independent terms, but in isotropic materials, tifness tensor simplifies down to 36
terms, many of which are interdependent or Zeftherefore, due to the symmetry of the
tensors given in Equation 3.4, it is often convahte work with the column vectors of

six stresses and strains instead of the full 3xBioes®.

+ N
P+ B °$°
T+ T# . '$; \)% . (3.6)
i —)y —
< 4@ <)wm @

With stresses and strains written in these forims,mhaterial stiffness can be rewritten
into an equivalent 6x6 matfx Here,[D] is material constitutive matrix defined by the

material Young's modulu€, and Poisson’s ratio®®,

B C
. C C :
c D -
8 —D ’
*C, - 3.7
C SE) (5 : (3.7)
g E'FFGHI' - :
(C-
/ y

The stress and strain for an isotropic materiallaea related by the material constitutive

matrixe,

+ *C,:$; (3.8)

28

3.2.2 Element selection, the tetrahedral element

The tetrahedral stress element was selected &Dtlebement for use in FEM solver.
The tetrahedral element was selected for two pginn@asons. The tetrahedral element
has distinct advantages in mesh generation usingd8@unay tetrahedralization and
orderly discretization, and the tetrahedron is reedr, constant-strain element which
allows for closed form calculation of the elemendtiffness matrix without requiring
numerical integratiolf. Other possible 3D elements include the linearahexral
element formed from 8 corner nodes and higher detesthedral elements with Jacobian
points included along the tetrahedral edges towafiar non-linear deformation in the
element. While these elements may provide morerateuesults for few elements, they
require numerical integration to form the elemestdfness matrices. Similar results can
be obtained my generating a greater number of itetasahedral elements. A general

solid tetrahedral element in the Cartesian cootdisgstem is shown in Figure 3.2.

z

Figure 3.2: General solid tetrahedral element

29

The signed volume of the element, can be found by calculating the following

determinate based on the nodal coordirfétes

(3.9)

[
=

—~ e~~~
—

It can be shown that the linear shape functidfis,N,, N3, and N4 take the following

form'®,
N C " F N C " F
" DR " DA
(3.10)
M N C)" F(M N C) P (
J J
Here, the shape function coefficients, ;, i, and ; are determined from the
displacement function and are dependent on nodatiowtes®.
(C(
Noo- | C -
((((3.11)
) - (. Foo- |
(]
and
(o
N - (. c - " (.
((((3.12)
) - (. P - |
(]

30

and

(o
Noo- C -
C o
() (3.13)
) - (. Foo- |
(.
and
(o
N - (. c - ' (.
C C
(. (3.14)
) - (. P - '
(1
The shape function matrif\] , is given by the followinty.
M M M M
™M, - M M M M . (3.15)
M M M M

It can then be shown that the element stiffnessixndk] , is defined without numerical

integration and takes the following fotn
*G *R,5*C,*R,J (3.16)

And the[B] matrix is defined as follow&

C C C C
1 /
T)))
P P = P .
* r
RO 50 o) o) o) o . G
(F) F) F) F)=
/F C F C F C F Cz

31

The element stiffness matrices can then be comlimetkate the global stiffness matrix,
[K] . The global stiffness matrix is then inverted anditiplied by the forces externally

applied to each nod§&:}, to find the nodal displacemen{d}.
T, ULV, (3.18)

Once the nodal displacements are found, they ad tes back solve for the elemental

strains in each eleméfit
'$ RV (3.19)

The elemental strains can then be used to solvehmrelemental stresses using the
relationship in Equation 3'8 The elemental stresses can then be combinedttiato

elemental von Mises stress invarfdnt

twx Y=+ RN R H g h ["t W\l (3:20)

3.2.3 Matrix analysis techniques

Due to its nature of formulation, the global stég&s matrix will be a positive definite,
banded, square matrix of sizen[8 3n], wheren is the number of nodes. The size of the
global stiffness matrix is often referred to as degrees of freedom. Here, each node has
three degrees of freedom (displacement in the any, z directions), hence a matrix of
size [3 x 3n]. Due to the positive definite, banded form of giebal stiffness matrix, the
entire matrix does not need to be explicitly fornaedi saved in memory. Instead, only
the non-zero terms of the upper triangle can beedtasing a modified Cholesky

decompositioff. This technique greatly reduces the required mgnfior storing the

32

global stiffness matrix and allows for efficientvarsion. This method is employed by
SAMSON, and the inversion of global stiffness mats performed on this “banded
global stiffness submatrix.” For example, a fulblghl stiffness matrix may be populated

similarly to the generic banded matrix given inufig 3.3.

Figure 3.3: Sample full global stiffness

In this case, it is redundant to store any inforamatcontained below the matrix
diagonal as this information is also contained abthe diagonal. Similarly, the terms
outside of the band width are known to be zerdheo storage is also unnecessary. If the
maximum difference in numbering between nodes endame element it Q -+
then it can be shown that the band width of therimad AQ ,. When

SAMSON solves simulations both locally and using tlemote HPC cluster, it only

33

stores the upper band in memory. For the array shiowFigure 3.3, the Cholesky
factorization is depicted as a 2D array in Figu#®3When solved using the cluster, the
banded global stiffness submatrix is stored asglesicolumn in a format required for
utilizing multiple core solution techniques. Thiopess will be covered in more detail in

Chapter 6: Cluster Implementation.

Figure 3.4: Global stiffness upper band stored r@st@ngular array

The inversion of this submatrix to be multiplied the applied forces (as given in
Equation 3.18) is performed locally using the Cbkkie method taken directly from
Weaver and Geté The inversion of the submatrix is performed reshotusing pre-

constructed multicore routines that can utilize H®C cluster's multicore processors

34

through parallel processifig A basic process map of the FEM implementatiorc@dore

is given in Figure 3.5. This summarizes the stagert by SAMSON in the FEM solver.

Input Mesh:
1. nodal locations
2. nodal classifications Build banded global
3. nodal connectivity :> stiffness matrix based @
on node locations and

Input Geometry: | "
1 loaded faces material properties

2. fixed faces ﬂ

Apply boundary
conditions and loads to @
nodes based on input

Invert stiffness matrix . :
and solve for <: geon;g;ri/ EE]?éTp“fy

displacements

@ Server: multicore MKL

routines
Local: Cholesky method

: Output:

Using displacements, 1. nodal displacements
@ back solve for elemental 2. elemental strains
stresses and strains 3. elemental stresses

Figure 3.5: FEM process map

35

4 Input Geometry Creation and Processing

SAMSON allows the user to import geometries in @@LLADA format, an open
standard XML (Extensible Markup Language) schema éeochanging digital assets
among various graphic software applicatiorlEhe COLLADA file format was selected
as it is one of the most widespread and popularféfmats among free 3D modeling
software packages, including Google SketchUp arehddr. When paired with one of
these modeling programs, SAMSON provides a costidt&snative to commercially
available, expensive, locally run 3D CAD/FEM packsg It was desired to allow
SAMSON to import geometries from already widely italsle 3D modeling software so
that it was not required to build a complete 3D eiod) application from the ground up.
3D modeling has already been widely programmed tlagek was no need to reinvent the
wheel. The purpose of this Chapter is to detail @@LLADA file format as this
information is not readily available in books. Tidbkapter will delve into extreme detail
of the XML file format. To illustrate the COLLADAapmetry, the geometry used in the

sample simulation (Figure 2.1) was imported infti®wing manner.

4.1 Creation of the custom geometry

The desired geometry was first created using the Wersion of Google Sketchtfp
Google SketchUp is available for download for WimdoXP/Vista/7 and Mac OS X at
http://sketchup.google.com/intl/en/downlo®dAn this case, a simple 1x1 ft square was
extruded into a 20 ft beam. Once the custom gegninets been created, the option to
export the geometry as a 3D model can be accesstfie file menéf. The COLLADA
file format is the default file type for 3D modekport in SketchUf’. This process is

illustrated in Figure 4.1.

36

Figure 4.1: Custom geometry created using GoogiecBkIF°

37

4.2 Analyzing the 3D model file

In reality, a COLLADA file is a XML (text) file fomatted in the COLLADA schema
for exchanging digital assets among various grapbaftware applicatiors A
COLLADA file follows a standardized format to corywénformation needed for 3D
rendering using standard XML syntébor example, if the COLLADA file exported in

Figure 4.1 was opened in a text editor, the foltayinformation would be contained in

the file?®.
<?xml version="1.0" encoding="UTF-8" standalone="no ">
<COLLADAxmIns =" http://www.collada.org/2005/11/COLLADASchema "
version ="1.4.1 ">

<asset >

<contributor >
<authoring_tool >Google SketchUp 8.0.4811 </ authoring_tool >
</ contributor >
<created >2011-12-20T16:50:35Z </ created >
<modified >2011-12-20T16:50:35Z </ modified >
<unit meter ="0.02539999969303608 " name ="inch " />
<up_axis >Z_UP</ up_axis >
</ asset >
<library_visual_scenes >
<visual_scene id ="|D1">
<node name =" SketchUp ">
<instance_geometry url ="#ID2 ">
<bind_material >
<technique_common >

<instance_material symbol =" Material2 " target ="#ID4 ">
<bind_vertex_input semantic =" UVSETO
input_semantic =" TEXCOORDinput_set ="0" />
</ instance_material >

</ technique_common >
</ bind_material >
</ instance_geometry >

</ node >
</ visual_scene >
</ library_visual_scenes >
<library_geometries >
<geometry id ="I1D2">
<mesh>
<sourceid ="ID5">
—_— <float_array id ="ID8" count ="72">1212000001201200
121201202401200121224012024000 0120000
24001224000000240012001224012 120012012
12240120240012 24000240 12 12 240 </ float_array >
<technique_common >
<accessor count ="24" source ="#ID8" stride ="3">
<param name =" X" type ="float " />

38

<param name ="Y" type ="float " />
<param name ="Z" type ="float " />
</ accessor >
</ technique_common >
</ source >
<sourceid ="1D6 ">
—_— <float_array id ="ID9" count ="72">00-100-100-100-1
100100100100-0-1-0-0-1-0-0- 1-0-0-1-0
-100-100-100-100-010-010-01 0-01000
1001001001 </ float_array >
<technique_common >
<accessor count ="24" source ="#ID9" stride ="3">
<param name =" X" type ="float " />
<param name ="Y" type ="float " />
<param name ="Z" type ="float " />
</ accessor >
</ technique_common >
</ source >
<vertices id ="|D7 ">
<input semantic ="POSITION" source ="#ID5" />
<input semantic ="NORMAL source ="#ID6" />
</ vertices >
<triangles count ="12" material =" Material2 ">
<input offset ="0" semantic ="VERTEX source ="#ID7" />
— <p>01210345654789109811121314131 21516

17 18 17 16 19 20 21 22 21 20 23
</ triangles >
</ mesh>
</ geometry >
</ library_geometries >
<library_materials >
<material id ="1D4" name =" material_0 ">
<instance_effect url ="#ID3" />
</ material >
</ library_materials >
<library_effects >
<effect id ="1D3 ">
<profile_ COMMON >
<technique sid
<lambert >
<diffuse >
<color >1111 </color >
</ diffuse >
</ lambert >
</ technique >
</ profile_ COMMON >

=" COMMOKN

</ effect >
</ library_effects >
<scene >
<instance_visual_scene url ="#ID1" />
</ scene >
</ COLLADA

39

</ p>

The data contained in this file is fairly simplegarse back into usable information
once the schema is understood. The characters whaite up a COLLADA/XML
document are divided intmarkupandcontent’. Markup and content are distinguished
by simple syntactic rules. All strings which coh# markup either begin with the
character ‘<’ and end with a *>’, or begin with @ampersand, ‘&, and end with a
semicolon, ". Any string that is not markup is then content.rkig strings are often
referred to asags There are three types of tagtart-tags for example<section> , end-
tags for example</section> , andempty-element tag$or example<iine-breaki> %',
Any logical entry either begins with a start-tagdaends with a matching end-tag or
consists only of an empty-element tag. The charatietween the start- and end-tags are
the element'sontent and may contain markup, including other elemewntsich are
called child elements Additionally, markup may contain attributes. Atftribute is a

markup construct consisting of a name/value pait éxists within a start-tag or empty-

element tag. To illustrate these concepts, considesimple XML entry.

<parent_element >

<child_elementl name =" A
Contentl
</ child_elementl >
< child_element2 name ="B">

Content2
</ child_element2 >
</ parent_element >

As can be seen, this entry has one parent eleratdining two child elements, and
each child element contains some content and abuaé callechame. The same analysis
can be applied to the COLLADA 3D model presenteglvimusly. The parent element,

<COLLADA> has six child elements,<asset> , <library visual_scenes> ,

40

<library_geometries> , <library_materials> , <library_effects> , and <scene> .

This can be easily seen in the following abbreddtem of the XML file.

<COLLADA
<asset >

</ asset >
<library_visual_scenes >

</ library_visual_scenes >
<library_geometries >

</ library_geometries >
<library_materials >

</ library_materials >
<library_effects >

</ library_effects >
<scene >

</ scene >
</ COLLADA

Here, one can find information about the file amgthe visual scene, the object
geometry, the object material, and any visual ¢$fea the object. It is important to note
that, in 3D rendering, the term “material” refessthe texture or image used to wrap the
object. It does not refer to material in any engmey sense. Fortunately, all of this
information is not necessary to define a 3D geoyn&H the information to completely
define the geometry of the object is contained undéhe element
<library_geometries> . This element needs to be discussed in furtheaildas the

standard in which geometry information is storedasimmediately intuitive.

Notice that the first child element oflibrary geometries> iS <geometry
id="ID2"> . When Google SketchUp exports a file as a COLLADAseparates the
information from multiple extrusions into separageometry tags. For a simple

rectangular prism, there is only one extrusion tretefore only one geometry tag. For

41

more complex shapes there can be many. Geometitbs multiple extrusions will

contain multiple <geometry id="ID#"> child elements, each with an individual id
attribute. In each geometry, the only content oferest is contained in two
<float_array id="1D#"> tags and onep> tag. The first float array contains the x, vy,

and z locations of the geometry vertices in thieowing form.

<float_array id ="ID#" count ="#">
x1ylz1lx2y2z2x3y32z3...
</ float_array >

The second float array contains a normal vectoo@ated with each vertex split into

components. It has the following form.

<float_array id ="ID#" count ="#">
nl xnl yn2 zn2 xn2_.yn2 zn3_ xn3.yn3 z...
</ float_array >

The final point array contains information aboug thiangles formed from the vertices.
Each number corresponds to an address in the e®rigray, and three vertices

completely define a triangle. It has the followiiogm.

<p>
t1 1t1 2t1 3t2 1t2 212 313 1t3_21t3_3 ...
</ p>

For example, the 3D model presented previously ainstgeometry information
about 24 vertices as summarized in Table 4.1. Then®del also contains information
about 12 triangles as summarized in Table 4.2. Aumaber of triangles matches what
would be expected to define a rectangular prisrh wito triangles to define each of the
prism’s six faces. However, the number of vertioesy appear counterintuitive as only

eight vertices are required to completely defineeetangular prism. However, in the

42

COLLADA schema, each vertex has an associated naector that defines the triangle
normal vector the vertex belongs to. In this casene vertices are repeated multiple

times as these vertices are used in multiple tlemwgith different normal vector.

Table 4.1: COLLADA vertex information

Vertex Location Normal | Vertex Location Normal
0 (12,12,0) | (0,0, -1) 12 (0, 12, 240) | (-1, 0, 0)
1 (0,0, 0) 0,0, -1) 13 (0,0, 0) (-1, 0, 0)
2 (0, 12, 0) (0,0, -1) 14 (0, 0,240) | (-1,0,0)
3 (12,0, 0) 0,0, -1) 15 (0, 12, 0) (-1, 0, 0)
4 (12, 12, 0) (1,0, 0 16 (0, 12, 240) | (0,1, 0)
5 (12,0,240) | (1,0,0) 17 (12, 12, 0) 0,1,0)
6 (12, 0, 0) (1,0,0 18 (0, 12, 0) 0,1, 0
7 (12, 12,240) | (1,0, 0) 19 (12, 12, 240) | (0,1, 0)
8 (12, 0, 240) | (0,-1,0) 20 (12, 0,240) | (0,0,1)
9 (0,0, 0) (0, -1, 0) 21 (0, 12,240) | (0,0,1)
10 (12, 0, 0) 0, -1, 0) 22 (0, 0, 240) 0,0,1)
11 (0,0,240) | (0,-1,0) 23 (12, 12, 240) | (0,0, 1)

Table 4.2: COLLADA triangle information

Triangle | Vertices | Triangle Vertices
0 01 2 6 12 13 14
1 1 0 3 7 13 12 15
2 4 5 6 8 16 17 18
3 5 4 7 9 17 16 19
4 8 9 10 10 20 21 22
5 9 8 11 11 21 20 23

With this basic understanding of the COLLADA schertie necessary information
can be easily extracted by searching for key matiags. SAMSON will import the
COLLADA file as a data string and search that gfrior a key substrings, namely
<geometry , <float_array ~, and<p. The number of times thateometry appears in the

string corresponds to the number of extrusioniéndbject and therefore the number of

43

vertex arrays, normal vector arrays, and triangtaya that need to be imported. From
any appearance @fieometry , the first<float_array corresponds to a vertex array, and
the secondfloat_array corresponds to a normal vector array. Then theajamce of
<p corresponds to a triangle array. All this inforraatcan be extracted, split into arrays
delimited by the space character, and cast fromirgggo either a floating point decimal
or an integer. This process captures all the gegnrormation in the COLLADA file
while ignoring all other information which is unressary in SAMSON.

Duplicating the vertices and associating a norneatar with each vertex is redundant
and is not conducive to mesh generation technigBA84SON will then reformat the
arrays of vertices, normal vectors, and triangl@gplicate vertices are removed, and
normal vectors are assigned to triangles insteackxices. The geometry information as

stored by SAMSON will then take the form as seeable 4.3 and Table 4.4.

Table 4.3: Obtained vertex information

Vertex | Location | Vertex Location
0 (12, 12, 0) 4 (12, 0, 240)

1 (0, 0, 0) 5 | (12, 12, 240)
2 (0, 12, 0) 6 (0, 0, 240)
3 (12, 0, 0) 7 (0, 12, 240)

Table 4.4: Obtained triangle information

Triangle | Points Normal | Triangle | Points Normal
0 0 1 2|(,0,-1) 6 7 1 6|(1,0,0
1 1 0 3]|(,0,-1) 7 1 7 2|(1,00)
2 0 4 3| (10,0 8 7 0 2| (01,0
3 4 0 5| (1,00 9 0 7 5|(0,1,0)
4 4 1 3|(0,-1,0) 10 4 7 6|(0,0,1)
5 1 4 6](0,-1,0) 11 7 4 5|(0,0,1)

44

5 Meshing Implementation

In 1992, Joe F. Thompson, an aerospace engineecarhmanded a multi-institutional

mesh generation effort called the National Gridj&p wrote the followingy.

An essential element of the numerical solutionaofigl differential equations
on general regions is the construction of a griceém) on which to represent the
equations in finite form. . . . [A]t present it camke orders of magnitude more
man-hours to construct the grid than it does tofgen and analyze the PDE
solution on the grid. This is especially true nohatt PDE codes of wide
applicability are becoming available, and grid gea®n has been cited
repeatedly as being a major pacing item. The PD#esaow available typically
require much less esoteric expertise of the knaydalle user than do the grid

generation codes.

The author of this thesis found Thompson’s wordddoespecially true throughout
the development of SAMSON. The majority of the tisgent in the development of
SAMSON was spent on mesh generation algorithms,, afdall the developed

algorithms, meshing continues to represent theraesd in need of improvement.

5.1 Anintroduction to mesh generation

The automatic mesh generation problenvolves dividing a physical domain with a
complicated geometry into smaller, simpler piecgshsas tetrahedra. In this case, the
object domain is complete defined by the surfaemdies extracted from the COLLADA
3D model. The only information available to the mag algorithm includes the surface

vertex locations, the surface triangles each ddfing three surface vertices, and an

45

outward pointing normal vector for each surfacangle. The algorithm must be able to
volumetrically mesh an arbitrary object domain witkt the surface information defining
the shape of the geometry, and the generated mesh satisfy nearly contradictory
requirements. It must conform to and completelyefe@ the surface information
obtained from the COLLADA model; its elements carnipe too large or too numerdds
and it must be composed of elements with favorshépe®. “Favorable shapes” include
elements that are as close to equilateral andieegail as possible (regular tetrahedral)
and exclude elements that are long and/or thin &hgped like a needle or a kife)

Examples of “favorable” and “unfavorable” elemeats given in Figure 5.1.

Good Element Bad Elements

Figure 5.1: Quality of tetrahedral elements

One measure of element quality is thepect ratio The aspect ratioA, is a
measurement that should equal one for a reguiahidra and greater than one for non-
regular tetrahedra. Various definitions of aspatibrhave been used by authors of mesh
refinement algorithms. One common definition foe espect ratio of a tetrahedron is its
longest edge length divided by its shortest edggtle SolidWorks Simulation, a FEM
software package, defines the aspect ratio of rahtedlron as the ratio between the

longest edge and the shortest normal dropped fronertex to the opposite face

46

normalized with respect to a perfect tetrahédrahnother definition is provided by

Freitag and Knupf?.

a — d L (5.1)

Here,l; are the element side lengthg;x is the longest side length; akds the element

volume.

The pioneering work in mesh generation was doneebgarchers in several branches
of engineering, most notably solid mechanics auidl filynamics during the 1986sThis
period brought forth most of the techniques usethyoncluding the octree, Delaunay,
and advancing front methods for mesh generé&ti@ne of the algorithms developed for
SAMSON is based on a simple incremental Delaunathode developed during the
infancy of mesh generation. Unfortunately, neatlytlze algorithms developed during
this period are inherently unstable, and produdavanable elements when confronted
by complex domain geometries, stringent demand®lement shape, or numerically

imprecise CAD modefs.

During the 1990s and 2000s, these problems attrabte interest of researchers in
computational geometry, a branch of theoretical mater scienc®. Computational
geometers strove for “provably good mesh generdtibie design of algorithms that are
mathematically guaranteed to produce a mesh witbrédle elements, even for arbitrary
domain geometriéd Jonathan Shewchuk, a professor of computer sziericUC
Berkely, argues that during the early 2000s, meshegtion became a more active

academic field than the finite element methods tfaate birth to #°. Schewchuk argues

47

that the videogame and motion picture industries ®gonomically exceed the finite
element industries as users of meshing programdaylalmost all current research in
mesh generation is being completed by computatigeameters. The theory and
implementation of modern mesh generation routineseviound to be beyond the scope
of this thesis where simpler forms of mesh genemnatvere found to be satisfactory. As
previously mentioned, SAMSON allows for the generatof ordered and random

meshes. The algorithms developed to generate hiithow be presented.

The goal of the meshing algorithms is to take segate a set af points given by

P11 P21 P31 1Pil 1PnP| ={X|1yl1z|}

and generate a list oftetrahedral elements given by

El! E21 E31 LR !Ei! LR !EI’ EI :{Pj1 Pk1 P|1 Pm}-

Here, j, k, I, and m each correspond to one point in the tetrahedrainehtE; as
referenced back to the point $&tlt is important to note that the orderingj ok, I, andm
for each element is extremely important. The ordgdetermines the sign of the volume
(Equation 3.9) and must be consistent for everynetg to implement FEM. Using the
right-hand rule, the normal vector from the facenfed fromP;, Py, andP, can point
towards or away fronP,. In order for the volume calculated by Equatio® & be
positive, this normal vector should point towaRjs This convention was implemented
in SAMSON. All elements are stored such that thelumes are positive as calculated
by Equation 3.9. The signed volume convention idiclg the normal vectors formed

from P;, P, andP, is shown in Figure 5.2.

48

k R4
J J
Kk I
m m
> >
X X
Positive Volume . Negative Volume

Figure 5.2: Signed volume convention®t& { Pj, Py, Pi, Pm}

The ordered and random meshing routines differow they generate the point set.
The ordered meshing routine places points in aiggemethod where elements can be
immediately formed based on an understanding ofpibiat numbering. The random
meshing algorithm generates points randomly, nusbiee points, and then generated

elements from these points.

5.2 Ordered mesh generation

Of the two meshing algorithms, the ordered mesheggion algorithm is
conceptually simpler. Therefore, the developed mdieneshing routine will be presented
first. In general, the ordered mesh is more efficier rectangular objects such as beams
or plates but can be used on more general geomeffie demonstrate the steps
performed in creating an ordered mesh, consideg#ametry shown in Figure 5.3. The
geometry is a simple extruded ellipse created usiadgree version of Google SketchUp.

The model contains 96 vertices and 92 trianguleiasa face®.

49

Figure 5.3: Extruded ellipse from Google SketchUp

The ordered meshing routine discretizes the volurhabited by the geometry into
rectangular prisms. To do this, the routine wiltleythrough all the vertices (96 in this
case) and determine the six extreme values: thermim x, y, and z-coordinates and the
maximum X, y, and z-coordinates. From this, thdinguwill construct the bounding box
completely containing the object geometry. Thisirenbounding box will then be

discretized into smaller rectangular prisms as shbigure 5.4.

Figure 5.4: Constructed and discretized boundingfboextruded ellipse

50

The discretization of the bounding box will haverymag levels of grid density
depending on the mesh refinement input from the. idee mesh refinement dictates the
number of rectangular prisms that will lie along ghortest length of the bounding box.
For example, the discretization shown in Figurettad three rectangular prisms that lie
online the shortest bounding box measurement, goreling to a mesh refinement value
of 3. The number of rectangular prisms along theeottwo lengths will then be
calculated so that each rectangular prism is asedo a cube as possible. This ensures

that the generated mesh will only contain elemertis favorable aspect ratios.

Each corner of a rectangular prism then has thenpiat to become nodal point in the
final generated mesh if the point is found to sda or near the surface of the geometry.
Nodal points found to be outside the geometry Wl discarded. The vector distance
from each potential nodal point to the closesttioceon any geometry surface triangle is
calculated. In Figure 5.5, the vector distance from and sabjt pointP to pointB, the

closest point on the surface of the object to pBijns given by the vectdB — P)

Figure 5.5: Testing for point location in relatitman arbitrary geometry

51

The sign of the dot product ¢B — P) with the triangle normal vectod, then
indicates if the point is inside or outside of geometry. If(B — P)i & <0, then the point
is outside of the geometry. (B — P)i & > 0, then the point is inside of the geometry. If
(B - P)ith =0, then the point is on the geometry surface. Foreninformation on
locating pointB, see Appendix A: Finding the closest point oniangle in 3D. Based on
the value of the of the dot produ®& — P)i &, SAMSON will classify each point as an
interior point, an exterior point, or a surface rgoilf a point was found to be on the
surface, SAMSON will store the array index of tleometry surface triangle the point is

on. This information is saved to apply boundaryditbans more efficiently.

Each rectangular prism can then be divided inte fiv six tetrahedf& This is shown
in Figure 5.6 and Figure 5.7. For each of thesesiptes divisions, the positive volume
elements (consistently ordered) are given in Tdble and Table 5.2. Note that the
numbering indices begin with zero as this convenigused in most computer science

applications.

52

Figure 5.6: Division of a rectangular prism inteditetrahedra

Table 5.1: Five positive volume tetrahedra

Element Nodes
0 0 1 2 4
1 1 3 7 2
2 4 5 1 7
3 2 7 6 4
4 1 2 4 7

53

3

Figure 5.7: Division of a rectangular prism intg gtrahedra

Table 5.2: Six positive volume tetrahedra

Element Nodes

b W N R
O oo N PR OO
N~ o o~NPR R
W N Wb N w
fo N < NG B NEEEN

54

SAMSON divides each rectangular prism into sixaleédra due to advantages in
orientation. When the rectangular prism is dividet six tetrahedra, the orientation of
the triangles on opposite faces is the same. Whernrdctangular prism is divided into
five tetrahedra, the orientation of the trianglesopposite faces is mirrored. For example,
in Figure 5.7, both the front and back faces aveddd from bottom-left to top-right. In
Figure 5.6, the front face is divided from bottoafitlto top right whereas the back face is
divided from bottom-right to top-left. Thereforehen subdividing the rectangular prisms
into five tetrahedra, every division must be orgeh®0 degrees from the divisions of the
neighboring rectangular prisms. This is shown guFe 5.8 where differing color depicts

orientation.

(i+1,j,k+1)

(i+1,j+1,k+1)

Figure 5.8: Repeating orientation of five tetrat@erctangular prisms

55

If the rectangular prisms are numbered using thié&casi, j, andk as shown in Figure

5.8, alternating the orientation simplifies to thlowing technique in basic pseudocode.

However, this is not necessary when dividing edcth® rectangular prisms into six

tetrahedra. The same orientation can be repeatsubas in Figure 5.9.

Figure 5.9: Repeating orientation of six tetrahedangular prisms

56

For shapes which themselves are rectangular pr{srgs beams, plates, etc.), this
meshing routine will completely discretize the gebtm without requiring any further
mesh refinement. For irregular shapes, the mesh brisnodified to conform to the
irregular geometry. Any element that contains aste@ne node inside the volume is kept.
Any element in which all four nodes are outsidehaf object is discarded. Any node that
Is no longer used in an element is discarded. étaining nodes outside the geometry
are connected to at least one node inside the tobjeon the object surface. The
remaining exterior nodes are collapsed to the earfaf the geometry. Finally, the
meshing routine will calculate the centroid of #lements in which all four nodes lie on
the surface. These elements are most commonly faurabrners or in shapes with
drastically convex or concave surfaces. If the roéditof the element is found to be
outside the geometry (using the same techniquepies previously in this section), that
element is deleted. Figure 5.10 shows some medexaed by the ordered meshing
routine. The complete processes for generating@ered mesh is summarized in Figure

5.11.

Figure 5.10: Three geometries meshed with the eddereshing routine

57

Figure 5.11: Ordered meshing process map

58

5.3 2D Delaunay triangulation

The random meshing algorithm is more complicatean thhe ordered meshing
algorithm and requires a 3D Delaunay tetrahedratizaof randomly generated points.
Once a set of random points have been generatese thoints can be used in a 3D
Delaunay tetrahedralization. However, this procéssnot immediately intuitive.
Therefore, a simplified 2D Delaunay triangulationl irst be presented, and then this
process will be generalized to 3D Additionally, the 2D Delaunay triangulations
algorithms presented here can be used in the dawelat of any 2D FEM engineering

tools.

The Delaunay triangulation was first presented984Lby Boris Delaunay, a Soviet
mathematician at the USSR Academy of Sciences g@mdraier Soviet mountain climber
of his day® In mathematics and computational geometry, a el triangulation for a
set ofn points in a plane is the triangulation such th@apnint is inside the circumcircle
of any triangle in the triangulatidh Each triangle is often referred to asimplex(pl.
simplice$ of the triangulatioff. Delaunay triangulations maximize the smallestiamg
each simplex in the triangulation, minimizing theegence of simplices with poor aspect
ratio (i.e. long, skinny triangle¥) For example, the Delaunay triangulation of 11nfmi

with each simplex’s corresponding circumcirclehswn in Figure 5.12.

59

/ AN
/ AN
/ \
/ \
//
/ A /
/ AN AT —
\ \ Ve ~
/ 1y \
r ol AN A \
z — — _ Ve
\ N /}>\/\ Al \
/ v ~ - ~ O\ /// > \ \\)
~
/ 28 RN // / N /
/ — —. / / /
/ N -\ ~ ’\\k AN Y
: =
Y/ N - N —A~
 _ — \ v\ // AN
; / '\ \ \// \
W\ 4 BN QY y \
W) o 2K |
\\ L, > N>
\ A FON /
\\ N~/ Vv // /N \\ //
N //\ 7 / \\ //
R |
—_ - ‘
|
\ /
\ /
\ /
AN /
N v
~ ~

Figure 5.12: Delaunay triangulation with circumtsshown

For a set of collinear points, no Delaunay triaagjoh exists. (The notion of
triangulation is degenerate for this case.) For faumore points on the same circle, such
as the vertices of a rectangle, the Delaunay tukatign is not unique. In the case of the
vertices of a rectangle, two possible triangulaidhat split the quadrangle into two
triangles satisfy the Delaunay condition. By coesitlg circumscribed spheres, or
circumspheres the notion of Delaunay triangulation extends twe¢ dimensiorts
Higher dimensional generalizations are possiblet iou these cases, a Delaunay
triangulation is not guaranteed to exist or be udiy There are many algorithms for
finding the 2D Delaunay triangulation of a set oplanar points, including incremental
methods (simplest), divide and conquer methodsarag front methods, and sweeping

hull methods. Two incremental methods for findihg 2D Delaunay triangulation of a

60

set of points in thex(y) plane will be presented. SAMSON uses a similaremental

method for creating a 3D Delaunay tetrahedraliraitiothe &, y, Z) domain.

5.3.1 Incremental 2D Delaunay triangulation by buildirtgetconvex hull

In general, finding the Delaunay triangulation oket of points ind-dimensional
Euclidean space can be converted to the problefmaihg the convex hullof a set of
points in @ + 1)-dimensional spate Each point is given an additional coordinate équa
to the point’s magnitude; the convex hull is fouadd the bottom side of the convex hull
is mapped back tal-dimensional spadg@ As the convex hull is unique, so is the
triangulation, assuming all facets of the convexl lawe simplices in the Delaunay
triangulatior?*. Nonsimplicial facets only occur wheh+ 2 of the original points lie on

the samel-hypersphere (i.e. 4+ points are co-circular opbints are co-sphericéf)

Therefore, finding the 2D Delaunay triangulationpoints on thex, y) plane can be
converted into the problem of finding the conveXl laf a set of points in 3D. The
convex hull for a set of points in a real vectoa@pis the minimal convex set completely
containing all the poinf& For example, given a finite set of coplanar pmitiie convex
hull is analogous to stretching a rubber band st ithsurrounds the entire set and then

releasing it. For example, the convex hull of acdgtoints in 2D is shown in Figure 5.13.

Figure 5.13: Convex hull in 2D

61

Note that Figure 5.13 is purely for illustrationrpases. A 2D convex hull is not used
for building a 2D triangulation. Building a 2D Dellaay triangulation requires building a
convex hull in 3D. Similar to the rubber band métap the convex hull of a set of points
in 3D would be analogous to completely enclosingtia points in shrink wrap and
shrinking the envelope around the points. Therevarmus methods for calculating the

convex hull of a set of points in 3D. Here, an @mental method will be presented.

In general, given a preexisting convex hull, therémental algorithm provides a
method to add an additional point to the convex. lsiven a point seP and given the
convex hull of a subset of points i the convex hull for the entire point set can be
found by adding each remaining point into the convill. Once the convex hull

contains the entire set, the convex hull for alPdfas been found.

For example, a simplified example will be presente@®D (once again, purely for
demonstration purposes). In the incremental mettiwdalgorithm starts with a convex
hull of a set of points. Then, an additional pagadded to the point set, and the convex
hull may be modified to include that point. If ti®int lies outside the pre-existing
convex hull, the hull will be modified. If the pdihes inside the pre-existing convex hull,
the hull requires no modification. For exampleaipoint is added to the 2D convex hull
given in Figure 5.13, the convex hull may or may remuire modification as shown in

Figure 5.14.

62

Point added inside Point added outside
convex hull convex hull

Figure 5.14: Adding a point to a 2D convex hull

In 2D, building a convex hull is summarized in Fig.15. Consider a point set of
six points as shown in Figure 5.15. In this figutesre is an initial convex hull of three
points, referred to as theernel From this kernel, additional points are added| Hre
convex hull is modified to accept each new poiriteAall the points have been added
into the convex hull, the result is the convex Hal the entire point set. However, to

begin the incremental process, the kernel neelis &stablishe'd.

O

Figure 5.15: Incremental method for finding conveX from kernel

63

To find the 2D triangulation, the process illustchtin Figure 5.15 must be
generalized to 3D. The 2D Delaunay triangulatioguiees building the convex hull in
3D. Calculating a convex hull in 3D also requireleanel. However, in 3D, the convex
hull will contain a volume instead of an area. Twavex hull kernel can then be any
tetrahedron with a non-zero volume (as defined qudfion 3.9). In creating a 2D
Delaunay triangulation using the incremental conlveb method, the following steps are

required. Each step will be discussed in turn.

1. Lift points: “lift” 2D points into 3D by adding third coordita (Section 5.3.1.1)

2. Create kernel: create the kernel tetrahedral that will be useletgin the convex
hull (Section 5.3.1.2)

3. Build the convex hull: incrementally build the convex hull of the resufi
paraboloid (Section 5.3.1.3)

4. Discard upper hull: remove the upper portion of the convex hull
(Section 5.3.1.4)

5. Re-map the convex hull*collapse” the remaining 3D convex hull back orite t

appropriate 2D plane (Section 5.3.1.5)

5.3.1.1 Lift points

For a set of points in thex,(y) plane, each point must first be “lifted” into ¢er
dimensions in the following manner. For each poit= (X, Yi), in the point set, the
point is lifted into a third dimensior®; = (x, yi, X* + yi°). The result is a point set in
which every point lies on the parabolaid x* + y? in three dimesiori& For example,
consider the 200 randomly generated points onxhg plane shown in Figure 5.16. The

center of the plane is the origin. These pointsadirited to 3D as shown in Figure 5.17.

64

Figure 5.16: 200 random points in they() plane

Figure 5.17: 200 random points lifted into 3D

65

5.3.1.2 Create kernel

The convex hull kernel can then be any tetrahedwih a non-zero volume as
defined in Equation 3.9. This can be achieved lgctiag any four non-coplanar points
in the lifted point set. These points become vesgtim the kernel convex hull, and each
face of the convex hull has the potential to becomesimplex in the final 2D

triangulation.

5.3.1.3 Build the convex hull

Finding the convex hull in 3D is the same as thecess presented for finding the
convex hull in 2D. Starting from the kernel tetrdien, a new point is added to the
convex hull. If that point is outside the enclosedume of the current convex hull, the
convex hull must be modified to include the newnpolt is important to note that the
ordering of the points associated with each facdahef convex hull is crucial. The
ordering scheme must be consistent throughoutrtieinental process. When viewed
from outside the convex hull, the points associatgtth all faces could be ordered
counterclockwise or clockwise. Consider the tetdmalekernel formed from the four
pointsPy, P,, P3, andP4 as shown in Figure 5.18. A new poiRt, will be added to the

convex hull kernel.

66

X / X
7 Z

Figure 5.18: Adding one point to a tetrahedral kérn

Let all the faces in the convex hull ordered in aurderclockwise fashion when
viewed from outside of the convex hull. Then theefof the convex hull kernel should

be stored as:

Fi={Py, P2 Ps}
Fo = { P4, P2, P3}
Fz={ Py, Ps Ps}

Fa={Py, P3P}

Then, to test if any new point is outside the kértiee volume of the tetrahedron formed
from each face and the new point can be calculasgty Equation 3.9. If one of these
volumes is positive, then the new point is outgltke current convex hull. For example,
the new point,Ps, is added to the convex hull is Figure 5.18. Tldume of four

tetrahedra is calculated, one from each face ikéneel convex hull:

Vy is found from {P;, P2, P4, Ps }

V5 is found from {Pg4, P2, P3, Ps }

67

V3 is found from {P1, P4, P3, Ps }

V4 is found from {Py, P3, P,, Ps }

Here, point ordering is important. Of these volumésis positive meaning that the
new point is outside of the convex hull. Only iFablumes are negative will the point lie
inside the convex hull. Becausg is positive,F, is deleted, and three new faces are
added using the three edges frBgrand the new point. The new convex hull now has six

faces which are stored as:

F1={Py,P2Ps}
Fo={Py, P4 P3}
Fs={Py,P;P:}
Fa={ P4, P2, Ps}
Fs = { P4, Ps, P3}

Fe = { P2, P3, Ps}

This same process is repeated for each new paileidatd the convex hull. If multiple
faces have positive volumes corresponding to thve m&int, all these faces are deleted
along with any edges shared between these faces, Tiew faces are formed using the
remaining edges from the deleted faces. Adding eachpoint would appears as follows

in simple pseudocode.

68

$ v % &
$!
" %
$$'(! BB $$°
) *

&N ! $& $&+
$ $" &/ "$
" &0
$ s !
$&" $&
$&" $ $& !
!
$$! $$&
& $$3$! $$ 111

% &
! % $#

If this function is used to add one point to thewex hull, then forming the convex

hull for many points would be accomplished by cajlithis function for every point in

the point set. In pseudocode, building the conudkwould appear as follows.

$ 9

69

-2t

In building the 2D Delaunay triangulation, the cervhull is formed from points
lifted from 2D onto a 3D paraboloid. Because ak tpoints lie on the paraboloid

z=x% +V?, every point is guaranteed to lie on the surfédbe®convex huff.

5.3.1.4 Discard upper hull

Once the convex hull has been constructed, onlylakaer portion of the hull
represents the Delaunay triangulation. Therefong,face of the convex hull that has a
normal vector with a positive z-component (tigper hul) is deleted. The remaining so-
calledlower hull can then be re-mapped to the) plane to obtain the final Delaunay
triangulation. The lower convex hull for the poirgeown in Figure 5.17 is given in

Figure 5.19.

Figure 5.19: Lower convex hull of 200 random points

70

5.3.1.5 Re-map the convex hull

The lower convex hull can then be “collapsed” backo the appropriate plane. In
most cases, this is simply the ¥) plane. The re-mapping process is extremely sinmple
that the z-coordinate of each point is deleteds@irto zerdy. Each of the remaining
faces from the lower hull then becomes a simplethentriangulation. For example, the
Delaunay triangulation for the 200 points showrigure 5.16 is shown in Figure 5.20.
This was obtained by collapsing the convex hullvaian Figure 5.19 back to the, (y)

plane.

Figure 5.20: Delaunay triangulation for 200 randaoints

71

Using the two pseudocode function$ and %) ") described
previously, the entire formation of the 2D Delauniagngulation can be described by the

following pseudocode.

22 '$ |
(#
$$'($! $$°
22

$& 2 -2

%
$! %) ")

$! $!

$& $! % ! $ $
$1 I($s! 8! &$ 111
$& $!

$& 34 & O

$&" $! $& $!

Although very complex, this method represents oheahe simplest methods for
producing a 2D Delaunay triangulation. This methodn be generalized into
d-dimensional space. For example, finding a 3D Dwdgutetrahedralization would
require finding the convex hull of a point set iD 4vhere each point is defined as

Pi= (X, Vi, Z, X + Y% + Z9).

72

5.3.2 Incremental 2D Delaunay triangulation using a supr@gngulation

Another incremental method for forming a 2D Delaurtdangulation does not
include forming the convex hull. Instead, a “sup&ngulation” is constructed that
surrounds every point, and new points are addéldetsuper-triangulation incrementally.
In essence, the same mathematical tests are usetiessforming the convex hull of
lifted points. However, the conceptual derivatidrehind the two methods differ, and
different post-processing is required. In crea@ngD Delaunay triangulation using the
incremental super-triangulation method, the follogvsteps are required. Each step will

be discussed in turn.

1. Construct super-triangulation: construct a triangle that complete surrounds all
the points in the point set (Section 5.3.2.1)

2. Incrementally build triangulation: add each point to the triangulation,
rebuilding the triangulation after each additiopaint (Section 5.3.2.2)

3. Remove super-triangulation remove any simplex in the triangulation that

contains one of the points from the super-trianguta(Section 5.3.2.3)

5.3.2.1 Construct super-triangulation

For a set of random points in the, §) plane, a super-triangulation can be any
triangulation that completely contains all the psiin the point sé. For example,
Figure 5.21(a) shows a point set containing seaadamly placed points. Figure 5.21(b)
and Figure 5.21(c) both represent valid super-gidgattions for the set of points. All the
points in the point set must be inside the circuaheiof one of the simplices in the super-

triangulatiori®.

73

° o L4 °
° ° ¢
°
(a) (b) (c)

Figure 5.21: Super-triangulations for 7 random f®in

5.3.2.2 Incrementally build trianqulation

Much like the incremental convex hull method, thees-triangulation method relies
on adding one additional vertex to an existingngislation (instead of adding one point
to an existing hull) for each point not included thre triangulation. The process for
adding a point is given in the following psuedocBd@his should look similar to the

process for building the convex hull.

s ! #
$! % & $"% #
$$'($! $$°(! $$’

) *

$! $ |

* $! $&8%
$ 3 ! $! !
$&" $! $& $!
$&" $ $& !

!
$$! $$&
& $$$! $$ 111

$! $ 1/
I $ *

74

Conceptually, this process is pictured in Figug25.

To add a point into an existing
Delaunay triangulation...

Step 1:

Find which simplices have a
circumcircle encompassing the new
point.

Step 2:

Delete these simplices from the
triangulation, storing the three edge:
from each simplex. Delete duplicate
edges from the stored edges.

Step 3:

Create new simplices from the
remaining stored edges and the newv
point.

Step 4:
Add the new simplices to the
triangulation.

e

Figure 5.22: Adding a point to an existing triaragidn

75

It is important to note that each new point isg¢dshgainst every circumcircle in the

triangulation. It requires some formulation to séethe new point is inside the

circumcircle formed from three simplex verticeseTéguation of a circumcircle formed

from three pointsP;, P,, andPs, is given in Equation 5%2 Subscripts refer back to the

point numbering.

T T N

(5.2)

NY oY Y Y N

This determinate can also be used to can also &é tws check a fourth point’s

location with respect to the circumcircle formednir three poinfS. To test the

relationship betweeR, and the circumcircle formed ¥y, P,, andP3, there are three

possible cases.

e N R Y e N R Y

e N R Y

NY Y Y Y N

NY Y Y Y N

NY oY Y Y N

Case 1:
P, is inside the circumcircle (5.3)
formed byP;, P,, andPs.

Case 2:
P, is outside the circumcircle (5.4)
formed byP;, P,, andPs.

Case 3:
P, is on the circumcircle formed(5.5)
by Py, Po, andPg.

As in forming the 3D convex hull, the ordering Bf, P,, andP3 is important. The

previous cases assume that the triangle verticesoatered counterclockwise when

viewed in a right-handed,(y) coordinate system. Notice that this determimaexactly

the same as calculating the tetrahedral volumewfpoints lifted from thex(y) plane to

the paraboloidz = x* + y*. This determinate can be calculated quite effityeriThe

calculation of this determinate is given in theldaling pseudocode. The following

pseudocode function could be used both finding the tetrahedral volumes using the

incremental convex hull methaat testing relation to a circumcircle in the increran

super-triangulation method.

2 $&3% &
% 5(6(T#
% $ $" & $
$& (' $ % 3 Y#
)$&$ 5(6(7(2
65 6 85
65' 6' 85"
653 6 96 6'96' 45 95 5°' 95"
75 7 45
75" 7' 45"
753 7 97 7'97' 45 95 5°' 95"
25 2 45
25' 2' 45"
253 2 92 2'92' 45 95 5° 95"
$& , #H-(e
4<9 25 9 65'97534653975'
25'9 653975 465 9753
2539 65 975'465'975
$$ S $ $&$
= $
3 $ & $

Once every point has been added into the triangalathe complete Delaunay
triangulation has been fountut the additional points from the super-triangulateme
still included. These points were not in the oraipoint set and need to be removed. For

example, Figure 5.23(a) shows the super-trianguiatormed around seven random

77

points, and Figure 5.23(b) shows the resultinghgidation upon adding all seven points.
The resulting triangulation still includes threetraxpoints generated for the super-

triangulation.

(b)

Figure 5.23: Delaunay triangulation of 7 randormp®iwvith super-triangulation

5.3.2.3 Remove super-trianqulation

The final step in building the 2D Delaunay triarggidn for the point set is removing
any simplex that contains a vertex generated fer shper-triangulation. For the
triangulation shown in Figure 5.24(a), the resgltiimal Delaunay triangulation is shown

in Figure 5.24(b).

(@) (b)

Figure 5.24: Removal of the super-triangulation

The entire 2D Delaunay process using a super-tiatign is visually summarized by

the following Figure 5.25 through Figure 5.28 sagialy.

78

Figure 5.25: 1000 random points

Figure 5.26: Super-triangulation of 1000 random(soi

79

Figure 5.27: Delaunay triangulation of randandsuper-triangulation points

Figure 5.28: Final Delaunay triangulation of 10@@dom points

80

Using the two pseudocode functiong and)s$&$ described
previously, the entire formation of the 2D Delaunigngulation can be described by the

following pseudocode.

22 '$ |
(#
$$'($! $$°
22
% $4% | &
$! % 4 !
1'$!
)
$! $!
$&" $! "$ $&
4 1 > $4"$ 2
$&$ "% $4" $
$&" $! $& $!

This method represents one of the simplest metfmdproducing a 2D Delaunay
triangulation. As compared to building the 2D Delay triangulation using the
incremental convex hull method, the incrementalesdpangulation method ends up
being almost numerically identical. Both methodse tlee same mathematical tests when
building the triangulation, and as a result, bat equally efficient. The only difference
is that the incremental convex hull method mustaeenthe upper hull whereas the
incremental super-triangulation method must renmbeesimplices containing the super-

triangulation points. The author prefers the supgangulation method as it is more

81

immediately intuitive. SAMSON uses a 3D general@atof the incremental super-

triangulation methods only using tetrahedra ancesgghinstead of triangles and circles.
Compared to divide and conquer or sweeping hulhodd, the two incremental methods
presented are much less efficient. However, thesthads were beyond the scope of this

thesis.

5.4 Random mesh generation

In addition to the ordered meshing algorithm, tkerwalso has the option to generate
a mesh using the random meshing algorithm. Theorancheshing algorithm requires a
3D Delaunay tetrahedralization of randomly genergieints. In general, the random
mesh algorithm is more suited for irregular geomstr The random mesh generation
algorithm can be divided into 6 major processeschEaf these processes will be

discussed in turn.

1. Analyze the geometry: find geometry extrema, build bounding box, and
discretize bounding box into “cells” (Section 5.1

2. Generating random nodes:generate random nodes inside of each “cell,”
force some nodes to the object surface, includdicesr from original
geometry definition to capture surface informatjSection 5.4.2)

3. Sort nodes:sort the nodes in the characteristic directioredam the lengths
of the bounding box edges (Section 5.4.3)

4. Build super-tetrahedralization: Construct a large tetrahedralization that
completely encloses the bounding box (Section ».4.4

5. 3D Delaunay tetrahedralization: perform Delaunay technique to obtain

nodal connectivity (Section 5.4.5)

82

6. Remove super-tetrahedralization: Discard any nodes and elements

corresponding to the super-tetrahedralization {Sedé.4.6)

5.4.1 Analyze the geometry

The geometry is analyzed in the same manner dsiotdered meshing algorithm.
The routine will cycle through all the geometry tig¥s and determine the six extreme
values: the minimum x, y, and z-coordinates andnidgimum X, y, and z-coordinates.
From this, the routine will construct the boundimax completely containing the object
geometry. This entire bounding box will then becdiized into smaller rectangular
prisms, or cells, as shown Figure 5.4. The distagtn of the bounding box will have
varying levels of grid density depending on the Ime=finement input from the user. The
mesh refinement will dictate the number of cellattill lie along the shortest length of
the bounding box. However, the corners of each wéll not become nodal points.
Instead, the corners of each cell will be usedetalse boundaries for generating random

nodes.

5.4.2 Generate random nodes

After analyzing the input geometry, the similastidetween the random mesh
algorithm and the ordered mesh algorithm end. Témgetry has been discretized into
cells with known boundaries. The random meshingralgn will then generate from 4 to
6 nodes inside each cell. After every nodal pa@rngenerated, it is compared to the nodal
points generated in neighboring cells. Each nodstrbe a minimum distance from all
other generated nodes that depends on the geomiegyand the mesh refinement.
Random nodes are generated inside a discrete nuwhbells instead of just generating

random nodes throughout the entire bounding bois iBhdone to force some degree of

83

uniformity in node density throughout geometry a&sghboring elements should have
comparable sizes to ensure more accurate resultsletnents are consistent in size. At
this time, there has been no effort to force eldnsencentration at potential high stress
areas. Similarly, when checking the distance betweedes to ensure the minimum
separation, each node is only compared to otheesnodthe same cell and to nodes in

neighboring cells. This increases the efficiencyhef node generating algorithm.

Using the same process as in the ordered meshgogtaim, SAMSON will classify
each point as an interior point, an exterior poamta surface point. Exterior points are
discarded. In order to ensure that the surface gagnis captured, any node within a
specified distance of the surface is then forcedht geometry surface. If a node is
classified as a surface point, SAMSON will store #ray index of the geometry surface
triangle the point is on. This information is savedapply boundary conditions more
efficiently. Finally all the geometry vertices areluded as nodal points to ensure that

the surface information is captured.

For example, SAMSON was used to generate randontsiniside a cube. The points
generated for different mesh refinements are showkigure 5.29. The blue points
represent surface points. The green points repr@genor points. Note that for a cube, a
mesh refinement of 1 will generate 1 cell; a mefmement of 2 will generate 8 cells; a
mesh refinement of 3 will generate 27 cells; amdesh refinement of 4 will generate 64

cells.

84

Figure 5.29: Surface (blue) and interior (greenjesogenerated randomly

5.4.3 Sort nodes

As discussed in Chapter 3: The Finite Element Metthuplementation, the band
width of the global stiffness matrix depends on thaximum difference in nhumbering
between nodes in the same elemeht,Q - . In order to minimize the band width of

the global stiffness matrix, the points are sornedhe direction of the characteristic

85

length based on the lengths of the bounding boxe®dghe points are sorted by the
longest length direction of the bounding box. Thias completed using a modified
version of then-place quicksor@lgorithni’. This algorithm requires two functions, the

$ function and the s function. The partition function is given in

pseudocode as follows.

$ 1SS (¢ (3
& & % $$'
$! $1& & % $$'
&%$ & %$$' $! 8 <
$ ((8! ("@ (&
A $ 4 $& /
| # #$ A $BC&)" $
D / " @ &
@ $! E
$@ /
$& $! 8 < F =$!
& = D
$@
$@ / $@ <
£
$@ $!
$@

The in-place sorting functions divides the portion of the array between
indices ands! , inclusively. Depending on the sorting dimensitims function
moves all points with a & less than "@ & before the
pivot index, all points with a & greaterthan "@ & after

the pivot index. In the process it also finds timalf position for the pivot element, which

86

it returns. The sorting function then calls thetpian function recursively to sort the

points. The quicksort function is given in pseudixas follows.

$ 1 $ 8B (' (3
& & $$°
$! $1& & $$°
& $$ % ! $(('($3
8 (($!' (&
A $ 4 $& /
| # #$ A $BC&)" $
3 $&$%
=$!
" % & $!
@ I $ $! 8 <
G %N$ & $ & "
"H @ I $ (($! ("@ (&
l$"'$ & & $
$ ("H@ 4 < &
l$"'$ & %!
$ "H@ < $!' (&
Each recursive call to thijs $ function reduces the size of the array being ddrte
at least one element, since in each invocatioelément at* H @ is placed in its

final position. Therefore, this algorithm is guaesd to terminate after at

mostn recursive call¥.

Once the random points have been generated andcdsothe Delaunay
tetrahedralization can be found for this point &ecall that a Delaunay triangulation for
a set ofn points in 2D is the triangulation such that nonpas inside the circumcircle of
any triangle in the triangulatiéh Similarly, a Delaunay tetrahedralization for & sen
points in 3D is a tetrahedralization such that nmpis inside the circumsphere of any

tetrahedral in the tetrahedralizatfdnHowever, unlike the Delaunay triangulation, the

87

Delaunay tetrahedralization may not be unique mimmize the presence of elements with

bad aspect ratiéd

5.4.4 Build super-tetrahedralization

SAMSON builds the Delaunay tetrahedralization bgegalizing the 2D incremental
super-triangulation method into 3D. For a set @idam points in thex(y, 2 domain, a
super-tetrahedralization can be any tetrahedradizahat completely contains all the
points in the point s&t For example, Figure 5.30(a) and Figure 5.30(th lsbow valid
super-tetrahedralizations for a set of seven rangomts. All the points in the point set

must be inside the circumsphere of one of the stmplin the super-tetrahedralizatian

(b)
Figure 5.30: Super-tetrahedralizations for 7 rangomts

SAMSON builds a super-tetrahedralization in therfaf a rectangular prism divided
into five tetrahedra like that shown in Figure 80 This should not be confused with

the ordered meshing routine which discretizes tht@eevolume into rectangular prism

88

divided into six tetrahedra. The super-tetrahedaditbn could use five or six tetrahedra.
The number of tetrahedra in the super-tetrahe@tadiz is unimportant, and five was
arbitrarily chosen. To accomplish this, the bougdiox found during the random point
generation is used. A new rectangular prism istetehose side lengths are each 140%
of the corresponding bounding box lengths and shareentroid with the bounding box.
This is done to ensure all points lie inside theesttetrahedralization. For example,
Figure 5.31 shows the super-tetrahedralization rg¢éee for a cube containing 190

randomly generated points.

Figure 5.31: Super-tetrahedralization for cube getoyn

5.4.5 3D Delaunay tetrahedralization
The goal of the 3D Delaunay tetrahedralization allgm is to take the set af
random points given bigs, Py, ... , P, ... , Py and generate a list oftetrahedral elements

given byEs, E;, ... ,E, ... ,E.. Here, each tetrahedral element is formed from paints

89

given byE; = { P;, Pi, P;, Pm}. Much like the 2D incremental super-triangulatimethod,

the 3D incremental super-tetrahedralization metietids on adding one additional vertex
to an existing tetrahedralization for each pointincluded in the tetrahedralization. The
process for adding a point is given in the follogvipsuedocodé. This should look

similar to the process in 2D. The major differenoesult from the generalization from
2D to 3D. Circumspheres are used instead of ciraetes, and instead of storing three
edges from any triangular simplex, four faces frany tetrahedral simplex are stored.
Once again, ordering is important to ensure tharyeelement volume is positive as

calculated by Equation 3.9.

1'$ $ 3 #
$ $ 3 % & $"% ' #
$$'($ $ 3 $$($$
) *
$ % $ $ 3
* $ $ $& %
$ $ $ 3
$&" $ $ $& $ $ 3
2 '$ $3 & $ ' %#
4 & %!
I$ % (&' I $$
$ $ $ 3 #
&% $ 0 & +[1J1
H & &'$%$ % ' $
% $ $#2 % $&8"
$$% $ #
$& $ 3$&
$$! "3& $ B $ $
& $$$! $$ 111
$ $ 3 $ $/
$ "$ *

90

It is important to note that each new point isddstgainst every circumsphere in the
tetrahedralization. (As three non-colinear pointsnpletely define a circle, four non-
coplanar points completely define a sphere.) luieg some formulation to see if a new
point is inside the circumsphere formed from fatrahedral vertices. The equation of a
circumsphere formed from four point®;, P,, Ps, andP,, is given in Equation 5%

Subscripts refer back to the point numbering.

(5.6)

—~ A~~~
—~
NY oY oY oY oY N\

i W W N MY

This determinate can also be used to can alsodzetascheck a fifth point’s location
with respect to the circumsphere formed from fooins®™. To test the relationship
betweenPs and the circumsphere formed By, P,, P3;, andP,4, there are three possible

cases.

91

1 o ' (,

r o ' (- Case 1:

‘ o ' (Zj Ps is inside the circumcircle (5.7)
- o ' (- formed byP,, Py, P3, andP,.

/ G ' (2

1 o ' (,

r o ' (- Case 2:

; o ' ("k Ps is outside the circumcircle (5.8)
p - (' (- formed byP,, P, P3, andP,.

/ G ' (2

1 o ' (,

r o ' (- Case 3:

£ o ' (- Ps is on the circumcircle formed by (5.9)
r I (' . P1, P2, P3, andPa.

/ G ' | 2

As in forming the 2D triangulation, the ordering Bf, P,, P;, andP, is important.
The previous cases assume that the tetrahedradesedre ordered such that the volume
of the tetrahedral formed frofy, P,, P3, andP, is positive as calculated by Equation 3.9.
This determinate can be calculated quite efficierithe calculation of this determinate is

given in the following pseudocode.

92

- $& $ $&
% 5(6(7(2#
)$& $ 5(6(7(2(

5+ 5 4+
5+ 5' 4+
5+3 53 4+3
6+ 6 4+
6+ 6' 4+
6+3 63 4+3
7+ 7 4+
7+ 7' 4+
7+3 73 4+3
2+ 2 4+
2+ 2' 4+
2+3 23 4+3

5+ 6+ 5+ 96+
6+ 5+ 6+ 95+
56 5+ 6+'4 6+ 5+
6+ 7+ 6+ 97+
7+ 6+ 7+ 96+
67 6+ 7+ 47+ 6+
7+ 2+ 7+ 92+
2+ 7+ 2+ 97+
72 T+ 2+ 42+ 7+
2+ 5+ 2+ 95+
5+ 2+ 5+ 92+
25 2+ 5+'4 5+ 2+
5+ 7+ 5+ 97+
7+ 5+ 7+ 95+
57 5+ 7+ 47+ 5+
6+ 2+ 6+ 92+
2+ 6+ 2+ 96+
62 6+ 2+'4 2+ 6+

567 5+396746+3957 7+3956
672 6+397247+3962 2+3967
725 7+3925 2+3957 5+3972
256 2+3956 5+3962 6+3925

5+ 95+ 5+ 95+ 5+395+3
6+ 96+ 6+ 96+ 6+396+3
7+ 97+ T+ 97+ T7+397+3
2+ 92+ 2+'92+' 2+392+3

NN O Ol

$& , HK(#HL(#.
2 956747 9256 6 9725 45 9672

$%$ % $ $& $

= $
$ S $ & $

93

It is important to note that approximately 80 matldical operations are required to
check a point’s relation to a sphere, and this khecperformed many times when
building the tetrahedralization. This represenésdleatest computational requirement for
calculating the Delaunay tetrahedralization. Howetlags technique is the most efficient

possible manner to calculate the determinate givéguations 5.7, 5.8, and 5.9.

Once every point has been added into the tetrahealion, the complete Delaunay
tetrahedralization has been foundhut the additional points from the super-
tetrahedralization are still included. These pointye not in the original point set and
need to be removed. For example, Figure 5.32(ajvshbe super- tetrahedralization
formed around 15 random points, and Figure 5.32@hows the resulting
tetrahedralization upon adding all 15 points inte tsuper-tetrahedralization. The
resulting tetrahedralization still includes eighttra points generated for the super-

tetrahedralization.

Figure 5.32: Delaunay tetrahedralization with stieétrahedralization

94

5.4.6 Remove super-tetrahedralization

The final step in building the 3D Delaunay tetrataéidation for the point set is
removing any element that contains a vertex geaérfabm the super- tetrahedralization.
For the tetrahedralization shown in Figure 5.33(Hie resulting final Delaunay

tetrahedralization is shown in Figure 5.33(b).

Figure 5.33: Removal of the super-tetrahedraliratio

95

Using the two pseudocode functiong and)s$& $ described
previously, the entire formation of the 3D Delauniaegrahedralization can be described

by the following pseudocode.

22 ' % $ 3
((3 $ #
2)2

% $4 $ $ 3 &
$ $3 % $4 $ $ 3

& $ $3

$&" & "$ $&
$4 $ $3 > $4"8% ?
$&%"$ $4" $

$&" & $& $ $ 3

$&" $4"$ $&

This method represents one of the simplest metfmdproducing a 3D Delaunay
tetrahedralization. However, it was found that thieethod for building a
tetrahedralization is inherently unstable may natdpce a high-quality mesh. Future
development of SAMSON should look to improve thed@m mesh generation algorithm
by looking at octree methods or methods to optimmal locations after the
tetrahedralization has been built. However, thdityuaf mesh generated is acceptable in

most cases, especially for higher levels of meghement.

96

To summarize, the random meshing routine will gateerandom points in the object
interior and on the object surface. These pointstride a minimum distance from all
other generated points that depends on the geosie&ayand the mesh refinement. Using
the generated points, a 3D Delaunay tetrahedralizas created using an incremental
method’. Figure 5.34 shows two meshes generated by tf®nameshing routine. The

complete process for generating a random meshmsnauized in Figure 5.35.

Figure 5.34: Two geometries meshed with the randmshing routine

97

Figure 5.35: Random meshing process map

98

6 Cluster Implementation

SAMSON utilizes a 32 node, 382 cell cluster (I@#Us running under Windows
2008 HPC Server R2 system) at the University ofa®&ma dedicated to engineering
education. All simulations are internet-based, aralfreely open to others to utilize at

their institutions. SAMSON employs the HPC clugtartwo primary purposes.

1. Webl/file hosting: web hosting of SAMSON so that it can be accessed o
the internet as well as storing essential files
2. Remote calculations:performs required calculations taking advantagéhef

HPC cluster’s superior computing power

6.1 Webl/file hosting
6.1.1 Web hosting

SAMSON'’s most basic use of the remote HPC clustieed advantage of the cluster’s
server operations. SAMSON uses the cluster’'s welresd (eCluster.ou.edu) to host the
tool, making it available to access over the irterThe HPC cluster is running under
HPC Windows Server 2008 R2 which comes with mangilable roles, including
Internet Information Services 7.5 (11S). IIS is allfweb server that allows website

hosting.

IIS 7 was a complete redesign of 1IS from previeessions and was shipped with
Windows Vista and Windows Server 2008. IIS 7 introeld a new hierarchical
configuration system allowing for simpler site dgyd, new command line management
options, and increased support for the .NET FramktoThe current shipping version

of lISis IS 7.5, included in Windows Server 20R8. 1IS 7.5 improved FTP modules as

99

well as command line administration in PowerSfieBAMSON has been implemented
in the existing site hosted by the HPC clustervalg access to the tool from any

machine with an internet connection.

6.1.2 File hosting

SAMSON also uses the HPC cluster for basic filetihgs most notably, the pre-
created geometries in the geometry library andcctimepiled form of the tool itself. It was
desired to allow the user to perform simulationshait creating a custom geometry.
This is useful for demonstration purposes as welhldowing access to the tool without
requiring any 3D modeling software. Therefore, argetry library containing several
basic shapes was created, and access to thig/livear provided to the user. This allows
the user to become familiar with the tools withauéating a custom geometry. All
geometries in the geometry library were createchgighe free version of Google
SketchUp and exported as COLLADA mod&lsThese 3D models are stored on the

server hosting SAMSON.

When SAMSON is loaded into a browser window, a $&mgcript is run which
searches the server file system for geometry &iled returns the file names of all the
found geometries in the library as a single strlimited by the character ‘~'. This
allows the user to load a geometry file from theveeinto SAMSON and perform
simulations using this geometry. The script oniyntamns about 20 lines of code and is

given as follows.

100

M *1 N I O7BO2%! O$ O O

=M@& $ H& ocC' O 0
=M@& $ H& oC' &#@JO 0
=M@& $ H& ocC' &#P %0 0
$! *
2% $ #GR MO/S S S -S SO (09 & O(
Cs$J #52% $ T

$! $ s$Cs! oa
$ $tro *

cs! " T

Cs$! uva
I #P$ $ CS!T
0

This script then returns a single string to thesklanterface which delimits the string
and builds a list of all the files in the appropeidolder. These files are then available for
use in SAMSON. Adding geometries to or removing rgetrsies from the geometry
library is then as simple as adding or deletingsfiin the appropriate location (only

available to those with access to the server).

6.2 Remote calculations

A server cluster consists of a set of connectedeserthat work together so closely
that in many respects, they can be viewed as desBygtem. Server clusters can be
utilized to perform large scale calculations uspayallel processing techniques. The
capabilities of clusters have increased tremengioogér the last couple decades and
clusters continue to become more affordabli 1997, the top cluster in the world was
housed at Sandia National Labs and was capableoaft 2 TFLOPs (tera-floating-point
operations per secorfd) The current cluster used for this project at theversity of

Oklahoma is theoretically capable of 4.1 TFL&Ps

101

The HPC cluster has much greater computing povaer gersonal machines, greatly
reducing the computational time required for 3D FgiMblems that commonly approach
50,000 degrees of freedom for even simple modetxl us education. Utilizing the
cluster to perform calculations remotely requiresnmunication between the web-based
interface and the remote server. Flash tools cadtermanple HTTP function calls to the
website to run server scripts (as was used in #gwmmetry library), but these Flash
functions have two major limitations, text is tremged as strings and it is
synchronou®. Third party media servers such as Red5, WebQueQycle, or Wowza
can be installed on the cluster and used as amaiiee to built-in Flash HTTP function

calls”

These tools allow the web-based interface to conicat with the server through
dedicated channels using sock&tsSockets provide asynchronous communication
between the server and the web cfiérockets allows the server to communicate with
the client at any time, allow multiple function lsafrom the client, and transmit data in
binary (not requiring data conversiéh)This project uses WebOrb since it works with
ASP.NET and is free for university community liceg§ *°© WebOrb allows the web
client to call a function on the server and commata input parameters specified by the
user. The function on the server is part of a ctedpDLL (HPC Windows 2008

operating system) that acts as the job controlrarog.

A basic cluster configuration requires one noddgiheted as the head node, which
delegates responsibilities to the remaining computee&’. The head node allows
individual jobs to be scheduled and submitted andurn, assigns these jobs to available

compute nodé& The term “job” refers to the execution of anotpesgram available to the

102

compute nodes, in this case, an executable (.@eejdnstructed separatély In general, a

user (or web client) submits a job to the head ndtle head node delegates the calculations
required to complete the job to available compuwides. The job is run, and the results are
written to a file. The user can then access tletfl view the results or, as in the case of
SAMSON, the head node will reopen the results figgd in the results, and return these

results to the web client.

Job submissions are done through a server job algmtogram custom tailored to
SAMSON (see Appendix B: Job control program). Tleeedoped job control program
accepts input parameters from the web client (Flasts up the job dynamically, assigns
tasks to the job, specifics the computational resesi(1-12 cores), and sets job timeout
limits?®. The term “task” refers to the actual actions gresil to the compute nodes. In
this case, the assigned task will be to run anwgabte program specifically designed to
perform meshing and FEM operations for SAMSON. &kecutable is the third and final
component of the system that includes: (1) Flash glient, (2) job control program, and
(3) the executable. The executable program was ibedngeparately so that multiple
instances of the solver can be run at any givee fimm different nodé&. Additionally,
the executable program was compiled in two programgrtanguages, C# and C++. This
allows the efficiency of the two programming langea to be compared directly.

Communication between the web client and the dlusteummarized as follows.

1. The user provides input to the simulation usingvtle®-based client (Flash).
2. The web-client then sends the input parametersnigeg, meshing information,

material constants, etc.) to the cluster head hgdeaaking a remote function call

103

(also called “remoting”) to the server to start jble control prograi?. The input
parameters are passed directly to the job contogram in binary.

. The job control program accepts the input inforovatand writes it to an input
text file on the server. The job control progrararttbuilds and submits a new job
to an available compute node.

. The compute node then runs the executable whidsrieaand deletes the input
text file. The executable runs the simulation armidtes the results to an output
text file. When the job is complete, the computdennotifies the job control.

. The job control program reads the results in frown dutput text file and deletes
it. The job control program delivers the resultslbto the web client in binary.

. Finally, the web client interprets the results arging the information into its

native format and displays the results in a usefuh to the user.

104

Note that all communication between the job conpaodgram and executable is
accomplished through reading and writing text fites the server. All communication
between the web client and the job control is donbinary using WebOrb. A simple

process map of cluster access is given in Figure 6.

The head node The compute node
reads the output file solves and writes

Web interface and returns results. output to a text file. :
accessed Via |[@mmmm—m—— 1 corﬁviltlzbr:?)de
local machine 4 : P
| ! A
1 |
1 1
1 1
The onli ' ! ~ The head node
e online i i
e o I, Head node writes the input
interface CL 2 | parametersto a
passes input &= ===—=—————— COIEILIE O text file and calls
parameters to control script the FEM or
head node. S

meshing routine.

------ > Binary communication using WebOrb
— Communication through text files

Figure 6.1: HPC cluster utilization process map

The cluster can be used to run both the meshinglandEM solving routines. All
remote meshing calculations utilize one core ofvargcompute node as these routines
were developed independently of any parallel prsiogslibrary. Developing parallel
processing techniques to utilize multiple coresnfi@sh generation was beyond the scope

of this project.

The FEM solving routine is able to utilize multipteres by taking advantage of the
Intel MKL (Math Kernel Library§°. The Intel MKL has numerous efficient algorithms for
numerically solving common mathematical problemssMnotably, the Intel MKL has a

built-in routine for the inversion of large bandewtrices (the LAPACKE_dpbsv routirie)

105

This routine was used to invert the global stifBiesatrix and multiply the inverted matrix by
the applied loads to find the displacements. Thasriminversion and multiplication is by far

the most computationally intensive process in tB&1Fsolving routine and accounts for the
majority of the time required to run the solvinguitioe. The implementation of this routine
requires the banded global stiffness matrix (atipec inFigure 3.4 to be stored as a single
dimensional array. This routine can use from 1 2ocbres (maximum cores per node).
However, the remaining calculations in the FEM swvroutine are performed using one
core of a given compute node. This includes, building tjiobal stiffness matrix,

applying boundary conditions and loads to the modet back solving for elemental

stresses and strains.

The number of cores available for a single simatais limited to 12 which is the
maximum number of cores on a single node. Thioredor two primary purposes. It is
expected that multiple users may wish to accessiB@ cluster to run simulations using
either SAMSON or other developed applications. €fae, it would be unwise to allow
a single user access to more than 12 cores farem gimulation to avoid long wait times
for other users. Additionally, utilizing more thd® cores requires utilizing multiple
nodes, and the processes for sharing memory betweges and passing information

using MPI (Message Passing Interface) is complex.

106

7 Results

7.1 Comparison to theory

The sample problem presented in Figure 2.1 wasddiw various mesh refinements

both utilizing the HPC cluster and solving the diation locally. The obtained results

were compared to elementary beam theory, and edilcnl times were compared for

locally and remotely performed meshing and solving.

The centerline deflections were found using SAMS&N compared to elementary

beam theory given as shown in Figure 7.1. It wamdothat, as the number of generated

nodes was increased, the engineering tool convergadto the beam theory results with

the highest mesh refinement used having an almogiirm 4-5% error in the predicted

displacement. Recall that the number of degreéeetfiom (DOF) is equal tan3vheren

is the number of nodal points.

-0.1 A

Centerline Beam Deflection (in)

-0.8 -

-0.2 A

-0.3 A

-0.4 -

-0.5 A

-0.6 A

-0.7 A

- — = 27,072 DOF
- = = 39,123 DOF
- = = 72,963 DOF
- = = 122,187 DOF

e E|ementary Beam Theory

Distance from Left Wall (in)
40 80 120 160 200 240

252 DOF
1,107 DOF
2,928 DOF
6,075 DOF
10,908 DOF

Figure 7.1: SAMSON results compared to theory

107

7.2 Meshing runtimes
Solution run times were compared for meshing ardirep when the calculations
were performed locally and remotely. All local adltions were performed on an Intel

Core2 Duo CPU P8700 at 2.53 GHz and using 4.0 GRAN.

The times required to generate an ordered meshhi®rix1x20 ft beam were
measured. The results are summarized in TableNbtice that the total time required to
mesh the geometry became significantly less foremmefined meshes when the ordered
meshing was performed remotely. The total remotshing runtime is divided into
“mesh runtime” and “data transfer” time. “Calcutati time” is a subset of “mesh
runtime” that does not include reading the inplg tr writing to the output file. It is
interesting to note that the “calculation time” rfrathe remote routine section covers
equivalent processes as the “total” meshing tinsallp. For example, for the finest mesh
created locally, it required 40.27 seconds to nmthehobject. These same calculations
were performed remotely in 6.515 seconds. An aulddi 1.965 seconds were required
for string manipulation, reading and writing tottéiles, and transferring the data to/from

the server. All remote meshing calculations utdiome core of a given compute node.

Table 7.1: Local vs. remote runtimes for orderedmay

Mesh Local Time (sec) Remote Times (sec)

Nodes | Elements TOTAL Total | Calculation | Mesh Runtime | Data Transfer

84 120 0.046 0.671 0.001 0.003 0.668

369 960 0.072 0.682 0.008 0.016 0.666

976 3,240 0.393 0.808 0.066 0.086 0.722
2,025 7,680 1.713 1.138 0.363 0.408 0.730
3,636 15,000 5.857 1.780 1.041 1.094 0.686
5,929 25,920 16.42 3.572 2.729 2.821 0.751
9,024 41,160 40.27 7.263 6.515 6.655 0.608
13,041 61,440 >60 15.26 14.39 14.60 0.655
24,321 120,000 >60 54.16 51.42 51.87 2.289
40,729 | 207,360 >60 157.7 152.8 153.5 4,183

108

The times required to generate an ordered mesh messured using executables
compiled in C# and C++. The results presented eld.1 were obtained using the C++
executable as C++ was found to be significantlyerefficient than C#. In fact, meshing
runtimes for the C# compiled executable were comsily greater than those generated
locally using ActionScript. This was due to thetfdlcat C# considerable more data
conversation and string manipulation than the Cxecetable, and the C# executable
used inherently slow ArrayList variables while tBe+ executable used much more
efficient vector variables. The only advantag&éfover meshing locally was that using
the remote cluster bypassed the 60 second timd Imposed by Flash. Meshing
runtimes for local and remote calculation of anevedl mesh are given in Table 7.2.
Remote runtimes include the data transfer timeafmntrary time limit of three minutes

was imposed for the remote meshing routines.

Table 7.2: Programming language runtimes for oxleneshing

Mesh Local Time (sec) | Remote Times (sec)

Nodes | Elements ActionScript C++ C#

84 120 0.046 0.671 0.987

369 960 0.072 0.682 1.040

976 3,240 0.393 0.808 1.560
2,025 7,680 1.713 1.138 3.340
3,636 15,000 5.857 1.780 8.992
5,929 25,920 16.42 3.572 24.92
9,024 41,160 40.27 7.263 61.21
13,041 | 61,440 >60 15.26 122.6
18,100 | 87,480 >60 29.33 >180
24,321 | 120,000 >60 54.16 >180
31,824 | 159,720 >60 94.61 >180
40,729 | 207,360 >60 157.7 >180

These results are summarized visually in Figure Tt advantages to the C++

compiled executable are significant.

109

180 -
—a— C# Compiler

160 —=a— C++ Compiler

—a— ActionScript

140 -

120 -

100 -

80 -

60 -

Meshing Runtime (sec)

40 -

20

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000

Number of Generated Nodes

Figure 7.2: Ordered meshing runtimes vs. numbegeatrated nodes

7.3 Solving runtimes

The times required to solve the FEM simulationtfer meshes described in Table 7.1
were measured. The results are summarized in TaBleNotice that the total time
required to solve the simulation was dramaticadguced utilizing the HPC cluster, even
for relatively coarse mesh generation. It is alsteresting to note that more finely
generated meshes quickly require more time lodhly is allowed by Flash. Therefore,
for anything but the coarsest of meshes, the HRGtal is required to solve the

simulation.

110

Table 7.3: Local vs. remote runtimes for FEM solxartine

. . Local Time (sec) Remote Times (sec)
Stiffness Matrix 5 -
TOTAL Total Calculation | Solver Runtime | Data Transfer

252 x 195 0.151 0.739 0.094 0.124 0.615
1,107 x 498 5.422 0.934 0.156 0.187 0.747
2,928 x 921 >60 1.223 0.281 0.436 0.787
6,075 x 1,464 >60 2.350 0.686 1.045 1.305
10,908 x 2,127 >60 4.234 1.467 1.996 2.238
17,787 x 2,910 >60 6.711 3.229 4.305 2.406
27,072 x 3,813 >60 12.62 6.895 8.673 3.948
39,123 x 4,836 >60 25.71 15.66 18.38 7.338
72,963 x 7,242 >60 88.64 60.95 66.28 22.36
122,187 x 10,128 >60 241.6 192.5 202.9 38.68

All the results in Table 7.3 utilized 12 cores fbe inversion of the global stiffness
matrix. Some interesting trends become apparenmtcéarse meshes, the data transfer
accounts for the most significant amount runtimexr. finer meshes, the global stiffness
inversion accounts for the most significant amawumtime. For the finest mesh (40,729
nodes), the MKL operations required 187.6 secoadspunting for 78% of the total
FEM solving routine runtime. Data transfer accodritar 17% of the total FEM solving
routine runtime. Therefore, operations that utdiomly one core on the cluster accounted
for 5% of the total runtime. For the next finestaing24,321 nodes), the MKL operations
required 55.77 seconds, accounting for 63% of tia +EM solving routine runtime.
Data transfer accounted for 25% of the total FENVieg routine runtime. Therefore,
operations that utilized only one core on the @ustccounted for 12% of the total
runtime. In fact, for any simulation run requirimgore than 15-20 seconds, the MKL
operations and the data transfer will be the migstifscant operations as far a runtime is
concerned. For fine meshes, the operations usityg @me core require a much less

significant amount of time to perform.

111

It was desired to compare the times required tdopmrthe MKL routines using a
varying number of cores. The same simulation wasfou the next finest mesh (24,321
nodes) using 1, 2, 4, 8, and 12 cores. The renatailation times are summarized in

Table 7.4 and visualized in Figure 7.3.

Table 7.4: Remote runtimes varying the number oé€o

Cores Remote Times (sec)
Total | Calculation MKL Solver Runtime | Data Transfer
1 435.8 412.6 409.3 415.7 20.12
2 233.5 209.8 206.0 212.4 21.04
4 136.7 109.2 106.1 112.1 24.58
8 90.51 60.98 57.56 63.82 26.70
12 88.64 60.95 55.77 66.28 22.36
500 -
450 -
——
400 -
e—
350 -
S 300 -
(]
ST
(O]
£ 200 -
c
& 150 -
100 -
50 -
0 : ; ; ; ; . .
0 2 4 6 8 10 12 14

Number of Cores

Figure 7.3: Remote runtime vs. number of core¥&963 DOF

The curve pictured in Figure 7.3 is typical of om improvement as the number of
cores is increased. Initially, increasing the numbé cores produces a significant
decrease in runtime, but this improvement becoraess pronounced as the number of
cores continues to increase. In fact, there is simo improvement by increasing from 8

to 12 cores.

112

7.4 Comparison to other FEM software packages

Finally, the results from SAMSON were compared tsuits obtained using
SolidWorks Simulation, a FEM software package améd to use within SolidWorks
CAD suité?. The same problem described in Figure 2.1 wasesdoNHowever, the
material properties were changed to match the Balitts material properties for balsa
wood (Young's Modulus of 435,113.1 psi and PoissdRatio of 0.29Y. In SolidWorks,
a tetrahedral mesh was generated for identical gagnilx1x20 ft rectangular beam) as
that created using Google SkethUp. The “draft dqyalihesh was specified to generate
four-node, solid, linear elements identical to tnhgenerated by SAMSON. The results of
the simulation runs using SAMSON are given in Fegdrd. The results of the simulation
runs using SolidWorks Simulation are given in Fegdr5. Direct comparisons of solution

convergence are given in Figure 7.6 through Figuse

113

Centerline Beam Deflection (in)

Centerline Beam Deflection (in)

Distance from Left Wall (in)

0 40 80 120 160 200 240

e F|ementary Beam Theory
= SAMSON 369 Nodes
15 - = SAMSON 976 Nodes
= SAMSON 2,025 Nodes
----- SAMSON 13,041 Nodes
24 eeee- SAMSON 40,729 Nodes

Figure 7.4: SAMSON results compared to theory fdsé wood beam

Distance from Left Wall (in)

0 40 80 120 160 200 240

e E|ementary Beam Theory
1 ® SolidWorks 1,055 Nodes
----- SolidWorks 10,637 Nodes

154 ~°°=° SolidWorks 36,085 Nodes

-2.5 -

Figure 7.5: SolidWorks Simulation results compaxetheory for balsa wood beam

114

Centerline Beam Deflection (in)

Centerline Beam Deflection (in)

25 -

o
o
.

e
3]
L

25 4

Distance from Left Wall (in)

0 40 80 120 160 200 240
0 = T T)
L] ° .

- - | |
1 "oe.l

e F|ementary Beam Theory

SAMSON 976 Nodes
e ¢ ¢ ¢ ¢ SolidWorks 1,055 Nodes
= SAMSON 2,025 Nodes =

2 4

Figure 7.6: SolidWorks Simulation and SAMSON comesrce (~19nodes)

Distance from Left Wall (in)

0 40 80 120 160 200 240
-1 - e E|ementary Beam Theory
----- SAMSON 13,041 Nodes
e e o o ¢ SolidWorks 10,637 Nodes
2 -

Figure 7.7: SolidWorks Simulation and SAMSON comearce (~1Hnodes)

115

Distance from Left Wall (in)

0 40 80 120 160 200 240
0 ; ; :)
. 05 -
£
c
9
i3]
Q
© -1 1
o e E|ementary Beam Theory
S
8 | eee-- SAMSON 40,729 Nodes
m
_g -1.5 1 e e eeeSolidWorks 36,085 Nodes
I3
c
)
o
-2 -
-2.5

Figure 7.8: SolidWorks Simulation and SAMSON comesrce (~ 4x1bnodes)

It was found that the SolidWorks Simulation resutsverge to the beam theory
solution more quickly than SAMSON. However, the wergences appear to be of the
same order. The discrepancies are most likely dwehigher-quality solution algorithm
used by SolidWorks Simulation than created for SAMBand a higher quality mesh
generated by SolidWorks Simulation. However, ihad to define the exact reasons for
the discrepancy as the routines used by SolidWSiksilation for meshing and solving

are proprietary and not available for analysis.

116

8 Conclusion

A web-page based online, interactive engineeriogrieferred to as SAMSON (Solid
Analysis Meshing and Solving ONIine) was develop8AMSON accesses a remote
HPC cluster to perform FEM analysis quickly andasghtly. SAMSON consists of a
webpage-based user interface run in Flash Playgraaremote back-end capable of
performing complex calculations utilizing parallpfocessing techniques on a HPC
cluster. 3D geometry files can be generated u$ieg 3D modeling software and
imported into SAMSON, or geometries can be loadesinf a geometry library.
SAMSON volumetrically meshes the imported geomesing tetrahedral elements to a
user defined level of refinement. Loads and boundanditions are then applied to the
FEM model, and the program solves for nodal dispiants, elemental strains, and
elemental stresses. When solving the simulationMS@N allows the user to run the

desired calculations locally on a personal macbhmemotely using the HPC cluster.

SAMSON has been included within the appropriatet@anof a solid mechanics
eBook. Providing such a tool serves to enhance auurc by allowing students to
visualize deflections and stress fields as apptedBD components and introducing
students to the basic concepts of the finite elémeethod.SAMSON is accessible to
educators wishing to demonstrate engineering cas@qu prompt in-class discussion of
course material. In the professional environmem\MSON represents substantial
progress towards an alternative to expensive, lipgatalled FEM packages. SAMSON
proves the feasibility of performing complex FEMnsilations efficiently by accessing
remote a HPC cluster from a webpage. SAMSON iseatly hosted on University of

Oklahoma servers and has been made available tivagde by anyone with an internet

117

connection. The tool is browser based and requiceprogram installation other than
Flash Player making it accessible from remote @ldflocations. The available option to
perform all calculations on a remote HPC clusttoved less powerful devices to act as
an interface for setting boundary conditions arelvmng results without performing the

computationally intensive calculations locally.

This thesis detailed the theory and numerical tegles used in implementing the
finite element method and mesh generation into S@MSSimilarly, this thesis detailed
implementing remote access to a HPC cluster andingl parallel processing on this
cluster. The data structure of 3D COLLADA modelsswpresented, and specific
techniques (some not directly utilized in SAMSONgres presented for the general
improvement of the reader. These include increnhenédhods for constructing 2D and
3D Delaunay triangulations, a technique for findithg closest point on a triangle to

another point in 3D, and a basic script for accegiles on a remote server.

8.1 Contributions and accomplishments

In the development of SAMSON, a robust, completegiregering tool was
successfully built. SAMSON integrates 3D model imp8D mesh generation, FEM
analysis, and remote parallel processing into asilyeaccessible, webpage-based
application with an intuitive user interface. Metlsofor accessing FEM simulations
through a webpage were developed. A user friendputi module (webpage-based
graphical user interface) was built that allows tiser to define geometry and boundary
conditions. An automated job control system for veelcess to the remote cluster was
custom tailored for SAMSON. Efficient parallel pessing methods were investigated
and implemented into SAMSON. Original algorithms faoth 3D meshing and FEM

118

analysis were written. Guidelines for efficient eoutilization were set, and an
infrastructure was created to automatically displegults to the user’s webpage. All of
this was constructed for use by the average engimee lacks a strong computer science
background. SAMSON is designed for engineeringestts] instructors, and professional
with no experience in cluster parallel computingtloe finite element method. Finally,
SAMSON is free to access by anyone, anywhere invtiréd, even from portable devices

such as smartphones, laptops, and tablets.

8.2 Future development
Great strides have been made in order to progrdddS®N to this level of
refinement. However, there are currently many ktnins to the use of SAMSON. There

are several areas in which SAMSON is in need dh&rrdevelopment.

Future development of SAMSON should look to improtree random mesh
generation algorithm. The author recommends ingastin into octree methods which
are extremely popular in many 3D mesh generatidtwace programs. Additionally,
almost all commercially available or professionatisoduced mesh generation codes
include a mesh refinement step after the mesh bdas generated. For example, further
development should investigate methods to optimmmedal locations after the
tetrahedralization has been built. This is donentnimize the number of elements with

poor aspect ratio.

SAMSON is currently written in pure ActionScript darbuilt using the Flash
framework. SAMSON should be developed using thex Fitamework which contains

much greater functionality for interaction with reta servers as well as advantages in

119

building interfaces. The Flex framework is moreilgastegrated with WebOrb and has
access to more interface classes. However, devgjopside the Flex framework greatly

increases the file size of the compiled applicaflmna factor of 5 to 10).

Currently, all 3D rendering inside of SAMSON is @omsing Papervision3D.
Papervision3D is an open source real time 3D enfginElash Player that was developed
primarily for Flash-based online games. Paperviibmas been replaced by Away3D
which utilizes the new native 3D rendering capéb#i of Flash Player 11 and Adobe
AIR 3. This has the potential to greatly improve 88D rendering, especially for fine
meshes where many triangles are rendered. Unfdeiyndike Papervision3D, Away3D
uses a left-handed coordinate system for renderuglitional investigation should

include using a right-handed coordinate systendensi Away3D.

All remote mesh generation and some FEM implemiemtas$ currently solved on the
HPC cluster using only one core. Parallel procgssethniques for these processes
should be investigated to improve calculation mes and to efficiently utilize the HPC
cluster’s full capabilities. Finally, further dewgiment should assess the feasibility of
utilizing more than 12 cores. Utilizing more tha@ &ores requires utilizing multiple
nodes, and the processes for sharing memory betweges and passing information
using MPI (Message Passing Interface) is compleowéver, multiple nodes will be

needed to solve extremely large simulations reqgia large amount of memory.

120

9 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Arnaud, R., & Barnes, M. C. (2008OLLADA: Sailing the Gulf of 3D Digital
Content CreationA K Peters, Ltd.

Gramoll, K.Multimedia Engineering Mechanics of MateriaRetrieved from
https://ecourses.ou.edu/cgi-bin/ebook.cgi?doc=8&topie

Gramoll, K. (2007, June). “A Web-based Electronaok (eBook) for Solid
Mechanics.” Paper presented at 2007 ASEE AnnuafeCemce, Honolulu, HI.
DOI: AC 2007-785

Morales, C. (2011, June). “Development of a Mulatform (PC, iPad, Mobile)
eBook Platform.” Paper presented at 2011 ASEE AhGoaference, Vancouver,
Canada. DOI: AC 2011-2352

Gramoll, K. (1999, June). “Teaching Statics Onlvith only Electronic Media
on Laptop Computers.” Paper presented at 1999 ASttitial Conference,
Charlotte, NC. DOI: AC 1999-1668

Vikas, Y., Romanello, T., & Gramoll, K. (2000, Jyn€&Teaching Dynamics
Online with only Electronic Media on Laptop Compsté Paper presented at
2004 ASEE Annual Conference, St. Louis, MO. DOI. 2@0-3666

Ngo, C. & Lai, F. (2003). “An Online ThermodynamiCsurseware,Computer
Applications in Engineering Educatip¥ol. 11, pp. 75-82

Huang, M. & Gramoll, K. (June, 2004). “Online Inketive Multimedia for
Engineering Thermodynamics,” Paper presented at AZEE Annual
Conference, Salt Lake City, UT. DOI: AC 2004-3166

Gramoll, K. & Ngo, C(2004, June). “A Web-based Electronic Book (eBdok)
Fluid Mechanics.” Paper presented at 2004 ASEE Ah@onference, Salt Lake
City, UT. DOI: AC 2004-1793

Morales, C. (2011, June). “Implications of PubligheBooks on PCs and Mobile
Devices for Engineering Technology Educators.” P@gpesented at 2011 ASEE
Annual Conference, Vancouver, Canada. DOI: AC 2P345

Dhondt, G., & Wittig, K.Calculix: A Free Software Three-Dimensional
Structural Finite Element Progranketrieved from http://www.calculix.de/

Rieg, F.Z88 Aurora Retrieved from http://www.z88.de/

Patzak, B. (20000D0OFEM project home pag®&etrieved from
http://www.oofem.org

121

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Baylor, J. (2011)bConvergedRetrieved from http://www.bconverged.com/

Winder, J., & Tondeur, P. (201Bapervision3d Essential8irmingham, UK:
Packt Pub Ltd.

Chandrupatla, T. R., & Belegundu, A. D. (2004h}roduction to Finite Elements
in Engineering Upper Saddle River, NJ: Prentice Hall.

George, P., & Borouchaki, H. (199&elaunay Triangulation and Meshing,
Application To Finite Element®aris, France: Hermes.

Logan, D. L. (1992)A First Course in the Finite Element Methdbston, MA:
PWS Publishing Company.

Weaver, W., & Gere, J. M. (199Wlatrix Analysis of Framed Structurgsluwer
Academic Publishers.

Gramoll, K. (2012, June). “Development and Impletagon of a High
Performance Computer (HPC) Cluster for Engineelidgcation Simulations.”
Paper presented at 2012 ASEE Annual ConferenceAS@mio, TX.
Zienkiewicz, O. C., Taylor R. L., & Zhu, J. Z. (Z)0The Finite Element
Method: Its Basis and Fundamenta3xford Boston: Elsevier Butterworth-
Heinemann.

Mase, G. (1970)Schaum's outline of theory and problems of contimuu
mechanicsNew York: McGraw-Hill.

Gibson, R. (1994 Principles of composite material mechanibiew York:
McGraw-Hill.

Kazimi, S. (1982)Solid mechanicdNew Delhi, India: Tata McGraw-Hill.
Intel. Intel® Math Kernel Library for Windows* OS User'siide (Document
Number: 315930-017US). Retrieved from website::Hapftware.intel.com/sites/

products/documentation/hpc/mkl/mkl_userguide_wirl/makerguide_win.pdf

Google SketchUfVersion 8) [Software]. (2012). Google, Inc. Rewed from
http://sketchup.google.com/intl/en/download/

“XML.” Wikipedia: The Free Encyclopedi@001, Nov. 18). Retrieved from
http://en.wikipedia.org/wiki/XML

Braunstein, R. (2010ActionScript 3.0 Biblelndianapolis, IN: Wiley Pub., Inc.

122

[29] Shewchuk, J. (2012)Unstructured Mesh Generatid@hapter 10 of
Combinatorial Scientific ComputingUwe Naumann and Olaf Schenk, editors),
pages 259-298. Boca Raton: CRC Press.

[30] Eberly, D. (2008, Mar. 01pistance Between Point and Triangle in.3D
Retrieved from http://www.geometrictools.com/Docuntation/
DistancePoint3Triangle3.pdf

[31] “Delaunay Triangulation.Wikipedia: The Free EncyclopediRetrieved from
http://en.wikipedia.org/wiki/Delaunay _triangulation

[32] Delaunay, B. (1934). “Sur la sphére vide.” Izvegti@ademii Nauk SSSR.
Otdelenie Matematicheskikh i Estestvennykh Neak 7, pp. 793-800

[33] Frey, P.J. & George, P. (2008)esh Generation: Application to Finite
ElementsOxford, United Kingdom: Hermes.

[34] Lambert, T. (1998, Sept. 23). “Convex Hull Algonth.” The University of New
South Whales, School of Computer Science and EergiugeRetrieved from
http://www.cse.unsw.edu.au/~lambert/java/3d/huthlht

[35] Priester, Sjaak. (2005, Jul. 19). “Delaunay Triasdgl Weblog postCodeGuru
QuinStreet Inc., Web. 07 Feb. 2012. Retrieved from
http://www.codeguru.com/cpp/cpp/algorithms/genaréitle.php/c8901

[36] Weisstein, E. W. “Circumcircle MathWorld— A Wolfram Web Resource.
Retrieved from http://mathworld.wolfram.com/Circuincte.html

[37] “Quicksort.” Wikipedia: The Free EncyclopediRetrieved from
http://en.wikipedia.org/wiki/Quicksort

[38] Weisstein, E. W. “CircumshpereMathWorld— A Wolfram Web Resource.
Retrieved from http://mathworld.wolfram.com/Circyshgre.html

[39] “Internet Information ServicesWikipedia: The Free EncyclopediRetrieved
from http://en.wikipedia.org/wiki/Internet_Informah_Services

[40] “WebORB for .NET.”MidnightCodersRetrieved from
http://www.themidnightcoders.com/products/weborb+iet/

[41] Ethan Purich. (2012, January OtjolframAlpha Retrieved from
http://www.wolframalpha.com/

[42] SolidWorks Simulatiar(2012). Dassault Systemes. SolidWorks Corp.

123

[43] Freitag, L. & Knupp, P. (1999). “Tetrahedral Elern8&hape Optimization via the
Jacobian Determinate and Condition Number.” ArgoNag&onal Laboratory:
Mathematics and Computer Science Division. DOI: AMCS/CP-99689

124

10 Appendices

10.1 Appendix A: Finding the closest point on a trianglen 3D

10.1.1Mathematical formulation

The problem is to compute the minimum distance betwa pointP and a triangle
T(s, t) = B + s+ tE, for (s,)mD = {(s, t) : sm][0, 1], tm][0, 1], s + tn 1} *. The

minimum distance is computed by locating the val(ggg m D corresponding to the
point on the triangle closest B (See Figure 10.1.)

Figure 10.1: Point and triangle in 3D
The squared-distance function for any point onttleagle toP is Q(s,)= [T(s, t) PF
for (s, tymD. The function is quadratic in s and t,
goH ro soH tH Vo GH u

wherea=Ep - Ep, b=Eo- E;,c=E1-E,d=Ey,-B P),e=E;-(B P), and
f=B P)- (@B P)*. Quadratics are classified by the sigmof b 2. For the function,

rt s i i i \Y; Vv k

The positivity is based on the assumption thatweeedges, andE; of the triangle are
linearly independent, so their cross product is@zero vector.

In calculus terms, the goal is to minimig¥s,) over D. Since Q is a continuously
differentiable function, the minimum occurs eitl@ran interior point oD where the
gradientwQ = (0, 0) or at a point on the boundary®f®. The gradient is defined as

125

follows. wQ = (Qs, @) whereQs and Q; are partial derivatives with respectg@ndt.
ThereforewQ = 2(@@s+ bt +d, bs+ ct + €)

The gradient of) is zero only wheop= (be cd)/ (ac b? andHx: (bd—ae) / (ac b?).
If (opHPmD, thenQ has been minimized. Otherwise, the minimum musuobon the
boundary of the triangf& To identify the correct boundary, consider Figlie2.

t
Region 2 A
(0,1)
Region 1
Region 3
D
(1,0)

> S

Region 4 Region 5 Region 6

Figure 10.2: Boundary regions of a triangle in 3D

The central triangles is the domain@f (s, t)mD. If (opHpis in the domairD, then then
point on the triangle closest Bis in the interior of the triangt®

Suppose thatop Hp is inside Region 1Q is a paraboloid, so the level curves are
manifested as ellipses in the s, t pfinAt the point wheravQ = (0, 0), the level curve
degenerates to a single poiop The global minimum of occurs there and has a
value Qmin. As the level value®) increase fronQmin, the corresponding ellipses grow
increasingly further away fronopHp *°. Then there exists a smallest valug)gs,) = Qo
such that the ellipse will just touch the trianglemain edge defined by+ t=1 at a
value & m[0, 1], t, = s — 1) ¢ This value of &, t,) provides the minimum squared-
distance betweeR and the triangle. These concepts are illustratdéigure 10.3. In the
end point cases, the ellipse may just touch orieeoVertices oD.

126

Figure 10.3: Level curves @Qi(s, t)

If (opHpis inside Region 3 or Region 5, the same procasse applied. IfapHpis inside
Region 3, then the minimum occurs at {§),for somet, m[0, 1] *°. If (opHPis inside
Region 5, then the minimum occurs gt Q) for somes, m[0, 1]*°.

If (opHpPis inside Region 2, then the level curve doesadribe following:

1. Touches the corner at (0, 1)
2. Touches the edge for whish+ 0
3. Touches the edge for whiehtt = 1.

At any point on the level curvewQ is in the direction towards the inside of the level
curve ellipse, which implies that it cannot poimta the triangl&. Therefore, the
direction of wQ can be used to determine which of the three cggaly.arhis is shown
in Figure 10.4. The same argument is used for Regjiand Region 6.

Figure 10.4: Three cases for level curve with ceinté&kegion 2

127

10.1.2Implementation

The following code applies the mathematical forrtiata given above. The provided
function (written in C++) takes four double arragpresenting four vectors in 3D. The
first three vectorsA, B, andC completely define a triangle in 3D. The functiotures a

vector of the closest point on the triangle tofthath vectorD.

999 9999999999999999999999999999999
9R$ $! 2 % 5 ((3(6 ((3 9
97 ((3($$ $1 9
9% & 2 ((3# 9
999 9999999999999999999999999999999

% 9 *J$! % 5-(% 6-(% 7-(% 2-
2 $& 2% ! ! , $%
2 6 * $! 2%2" +%$'(G & $ (NN7#
+ & /
/| # &% #&NWE & 2 2 # &
% I - 6 45 (6<45<(6 45 T
% I<- 7 45 (7<45<(7 45 T
% "- 5 42 (5<42<(5 42 T
% 191 Il <9 I < 19! T
% < I 9 I< I <9 I<< I 9 1< T
% << I< 9 I< << 9 I<< < 9 1< T
% % ! 9" Il <9" < | 9" T
% %< < 9" << 9" < I« 9" T
% nogn negre mogn T
% % 9<<4 <9 <T
% <9%<4 <<9%T
% <9% 4 9%<T
= $!
% =
T
4% 0
<T
4% T

128

N

foYoYoloYoRE

ARXRRXROOOQO
NP EPRET

rCr - -
CERSTE TR RAZBAAS

N

%<0
T
4%< 0 <<
<T
4%< <<T
$! -
T
%<0
T
4%<0 <<
<T
4%< <<T
= $!
T
% 0
T
4% 0
<T
4% T
& 2
& && $3
% "2 < T

129

<L

<<
<<<
<<
<<-
<<;
<<
<<Q
<<K
<<L

<Q<

<Q;
<Q:

% & (&<(&$(&T

= $!
& < %T
&< << %U<T
&<0 &
&$ &<4 &T
& 4 9 < <<T
&3$0 &
<T
T
&$ &T
<4T
T
&<=
<T
%<0
T
4%< <<T
= $| Q
& < %<T
& < %T
&<0 &
&$ &<4 &T
& 4 9 < <<T
&30 &
<T
T
&$ &T
<4T

130

<QQ
<QK
<QL
<Q.
<K
<K<
<K
<K-
<K;
<K:
<KQ
<KK
<KL
<K.
<L
<L<
<L
<L-
<L;
<L:
<LQ
<LK
<LL
<L.

<<
<.-
<.Q

<K
<.L

X0

<<

4%

T

$! <
&$ << %<4 <4%T
&%=
T
<T

& 4 9 < <<T

&$
<4T

&30
<T
]
%
w o988t
2 o 55< 99.! < 9 I<<
$§*<5 9 ! 9 I<
$ *
$$ 8T

&T

131

— -

-xO -

10.2 Appendix B:

Job control program

! C' &T
! C' &#P %T
! C' | T
! C &# &$T
! C' #G $ T
! C'" &#N T
! C &# T
! C' &H@JT
! C' T
! P%S$%HE ! #5 #C$" T
! P%S$WHE | 5 T
! P%S$%HE | HC $"$#5 ST
! P % $%#E | #5 #CJT
! E$ #W #C $T
! ES$ #W #C $H#$ $ T
! C &#$ IT
& c -
% C -E !'$
7N5CC D5I@5N6+C
% % %@ 2 T
& &% $ % $ (=<
% 7$*$H <T
% $! "1 & % 7 &(N
& 7 &(% c X % + % (%
$ $(% "$ 7 &($ 17 &(
$ 1 67(% $& 7 &
2 & $ 2 & #H T
'$ $ &SI 3 &
H&N ! QT $ & $! !
$!) 7%
0% ! & ,$ " '35672+RGWXYNEH*AIC ZDP[\]< - QKL.O T
I & $ H& I & T
$ $ $ H&N ' T
787) TS#HN!'T
& $$ (##W+52 < $ YW+52<
Cs$! H H& +"$ & #E H&T
$ T = H&N!T
$) 7%) T $#NI! 9
$ H&HH 2% T
$! 1 C$! $! $T
C$! R H& o -)@)o | C$! o# OT
Cs$! R H& O -)J)O | C$! o# OT

132

Yol

N

OO0 i~

AARARXOOOQO00
NP EPRETS

| e e i S S i S
CERGTI T IR ARZBZAAT

N

l_xro..

<<

< -

<Q
<K
<L

<<
<<
<<
<<-

< $

@c $ $ c $ T
$#H7 O o T
7% %
@c $X% % $HTS X% T
%oHH & 0%0 | C$IT
$ (
%
% & (%
C$! & $H H& oa
$ @C $H $#G H N

#H& 1 H H&
&

$H&6 " T
$ @C $7%

7 $(N (<@
2% (s B
"% $& $&
$! %
$ % (!
$#C #CS$! 1

$H&6 ' T

&% $ $
$H&6 '= 7$*$H

& $H H& #H&T
% T (

%H#, H #5 & $H H& T

&% $ $ %
NHE & &H & $IH <T
WHE & &H &% $IH <T

NHE & &H &N $I 7 $ 7$*$H T

WHE & E&H &% $IT7 $ 7T$*SH T
- 7%

@C $ %H#TS T

$ #G 7%

(76 (

$ %' &&

o@ O

133

%

<<
<<:

<<Q
<<K
<<L

<Q
<K
<L

<<

<:-

<Q
<K
<L

<Q
<Q<
<Q
<Q-
<Q;
<Q:
<QQ
<QK
<QL
<Q.
<K
<K<

- P$

$! R * MOSSO H H&
C' &H@JI CS$ &P$ $ R
$ T = 7 &#N ! 4<T
R #P$ 78& T
R #P$ uuT
R #P$ 7 & 7 &#N!
R #P$ uvur
N
$ T = N #N! 4<T
R #P$ N T
R #P$ uuT
R #P$ N N #N
R #P$ uvur
&
$ T = & 7 &#N ! 4<T
R#S$ & 7 & T
R #P$ uuT
R#P$ & 7 & & 7 &#N
R #P$ uvur
C N+ ($
R#P$ C IT
R #P$ uvur
R #P$ +T
R #P$ uvur
R #P$ T
R #P$ uvur
R#P$ $ $ T
R #P$ uvur
"$
$ T ="$ 7 &#N ! 4<T
R#P$ "$ 7 & T
R #P$ uuT
R #P$ "$ 7 &"$ 7 &#N
R #P$ uvur
$!
$ T =$17 &#N ! 4<T
R#P$ $ 17 & T
R #P$ uuT
R#P$ $!17 & $ 17 &
R #P$ uvur

MOS $SO

C' &#@I# C$ &P$ $

4< T

1'4<T

1'4<T

1 4<T

#N ! 4< T

134

R H&T
R *

T

<K
<K-
<K;
<K:
<KQ
<KK
<KL
<K.
<L
<L<
<L
<L-
<L;
<L:
<LQ
<LK
<LL

X0

-x0 -

$ 167
$ T =$ I 67#N | 4<T
R #P$ $ 167 T
R #P$ uuT
R #P$ $ 167 $! 67#N | 4< T
R #P$ uvur
$&
$ T = $& 7 &#N | 4<T
R #P$ $& 7 & T
R #P$ uuT
R #P$ $& 7 & $& 7 &#N | 4< T
R#7 T
2 & R 7$ 2 & HHT
@Q $ @ 7' #@Q, RTS # 4 $# T
% $@C $@ < #T
%I % % 1"
$ % &
Z $" & % $ $& & $
% $" & #
@& $ $ & $ $" $&W
#7 8&& N MOSSO H H& MOS $S -# O T
#7 8& N 00 R * o "o T
- 7%
$ 3 % ' &
! $ % &
C$! R * MOSSO H H& MOS $ SO R H&T
#C J R * R*T $ ##HO
HE &&H&%$ITS T7S$*$H T
HE & &H&%$I7S$ TS*$H T
; $ %
%H5 T
%#J X %C +W S =X%C +" 581 0 %)JIX%C T
Wt*$ $ X%*$ $ ' #W! T 4;:1($&
C %& %($ & $ &
$H#C %& X % %(e el o
% (%@2 %)J X %C
1 %@ 2
C &#$ $ #C < T

135

'i_"x':c')'::: -

R R

N

000000

ARARXXXXOOOO
ATORRS

O XXXAX
O A “FERHO

2 & P 2 & HHT
@ Q; % 7" #@Q P # 4 R T$ #
% %C % < #T
($
C$ & R C$ & R * (R E
#* T $ & $
C$ & $ $ $ cs &l $ T
C$! I $ $#l o+ T
$ $H7T T $% & $!1$1$&!
#70T
$&" $& $"$
R @ R @ R * T
#2 0T
2 & 2 & HHT
@ Q; 7" #@Q # 4 $# T
% C < #T
@ Q; % J 7" #@Q; # 4 P # T
% $JC $J < #T
I oCcs$'$l & O C#C$! 0-0))
$ % I T
% $!1 & 1& 1 (&1 & (%
"$ 7 &($ 17 &(% $& 7 &
2 & $ 2 & HHT
I'$ $ & $ K $ &
H&N! QT $ & $1! !
$1) 7%
O% ! & ,$ " '35672+RGWXYNEH*AIC ZDP[\|< QKLO T
I & $ H& I & T
$ $ $ H&N ! T
787) TSHNI!T
& $$ ((##HWHE2< $YW+52<
C$! H H& +"$ & #E H&T
$ T = H&N!IT
$) 7%) 7 $#N! 9
$ H&H#H 2% T
$! 1 C$! $! $T
C$! R H& O -)@)O | C$! o# OT
C$! R H& O -)J)o | C$! o# OT

136

i_'x"c)'

<K

< $
@C $ $ cC 3 T
$#7 o o T
% %
@C $X% % $HIS X% T
%ttH & 0%0 I C$IT
$(
%
% & (%
C$! & $H H& oa
$ @C $H $#G H N

%#l ,

%H#HE
%HE
%#HE
%H#HE

#H& 1 H H&
&

$H& " T
$ @C $7% $ #G 7%

7 $(N (<@ (16

2% 1% 3"
"% $& $& $ %' &&
$!1 $
$ % (!
$#C #C$! 1 o@ O
$H&6 ' T
&% $ $

$H&6 '= 7$*3H

& $H H& #H&T
%$ T (

H # & $H H& T

&% $ $ %
&&H &YW SIH <T
&&H &YW $IH <T
&&H &N SI 7 $ T$*SH T
&&H &N $I 7 $ T$*SH T

- 7%

@C

$ %H#TS T

137

%

- P$ $!

$! R * MOSSO H H&
C' &H#@JI CS$ &P$ $ R
$ & I &
R#P$ $ T
R #P$ uvur
R#$ &1 & T
R #P$ uvur
"$
$ T ="$ 7 &#N ! 4<T
R #P$ "$ 7 & T
R #P$ uuT
R#P$ "$ 7 &"$ 7 &#N
R #P$ uvur
$
$ T =%$17 &H#N ! 4<T
R#P$ $! 7 & T
R #P$ uuT
R#$ $!17 & $! 7 &
R #P$ uvur
$&
$ T = $& 7 &#N | 4<T

R #P$ $& 7 & T
R #P$ uuT

R #P$ $& 7 & $& 7 &#N

R #7 T
% J % % I
$ % &
Z $" & % $ $&
% $" &#
@& $ $ $& $
#7 && N MOSSO H H&
#7 && N 00 R *
- 7%
$ % % ' &
! $ %
Cs! R * MOSSO H H&
#C J R * R*T

#E & &H &% $I7 $ 7T$*$H T
#E & &H &% $I7 $ 7T$*$H T

; $$ %
%#5 T

MOS $SO R H&T

C' &#@I# C$ &P$ $

1'4<T

#N ! 4< T

14<T

$" $&W
MOS $S -# O
0& OT

&
MOS $SO
$ ###O

138

R *

& $

T

R H&T

T

0 %)JIX%C T

%)J X %C

#I T

%#J X %C + W $ =X %C +" 5$!
%t*$ $ X%*$ ' #WI! T 40 1(
%& %($ & $ &
$HC %& X% %(o e« o
% (%@ 2
1 %@ 2
C &#$ # $ #C < T
($
C$ & R C$ & R * (R E
T $ & %
C$ & $ $ $ cs &l $ T
C$! I $ $# + T
$ $H7 T $% & $!1&!
#70T
$& $& $"3$
R @ R @ R* T
#2 0T
2 & 2 & HHT
@ Q; 7" #@Q; # 4 $# T
% C < #T
I oCcs$'$l & O C#C$!
$ 3 I T
%)J X %C % $(X %C +" 5%!
#H C X%C #R
#H C X%C #7 __
#H C X%C #R
%@ 2 $ T

139

140

